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de ces rencontres et de ce qu’elles m’ont apporté pour exprimer ma gratitude à ceux m’ayant permis
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lesquelles je souhaiterais très chaleureusement remercier Jean-Pierre. En espérant que ces quelques
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Dès mars 2010 et pendant quelques mois, j’ai aussi eu la chance et la joie de faire un peu partie de
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jamais assez Julie d’avoir été une compagne si drôle, attentionnée et compréhensive tout au long de
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de biberons, l’avoir auprès de moi est ma seule réussite incontestable. Je conclurai enfin ces déjà
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Chapter 1

Introduction

Not the least charm of a theory to be refuted.
Friedrich Nietzsche

The primary goal of econometrics is to model an outcome variable Y with the help of explanatory
variables Z. This relationship between Y and Z is however possibly perturbed by other unobservable
variables. Their influence is generally carried through a disturbance term U (also called noise or per-
turbation) incorporated in the model. Regardless of the sophistication of the model linking Y with Z
and U , no estimation is possible as long as no assumption is made on U . Generally, estimation begins
with an assumption on the (in)dependence between U and Z. This (in)dependence condition also
ensures (or not) the identification of the object of interest, depending on the form of the model. Ex-
ogeneity is the situation where this independence condition, under its various forms (non-correlation
between U and Z, conditional independence or full independence) holds. Its treatment is standard
in econometrics and well mastered for many years now. Exogeneity may also be considered as the
econometric counterpart of the concept of ”experimentation” in other scientific fields. We understand
through the term of experimentation, situations where the explanatory variable may be fixed, con-
trolled or assigned by the experimenter.

Endogeneity is generally defined as the non-exogeneity situation and is, beyond mathematical defini-
tions, a difficult concept. In a wide range of economic and social studies, the independence between
the explanatory variables and the unobserved ones makes no sense. It is of course always mathemati-
cally possible to make such an assumption between Z and the perturbation U . But the result of the
related estimation procedure is strongly different from the object of interest. In the static framework,
solutions to deal with endogeneity are known for long: Instrumental Variables and Control Functions
are such examples. In a dynamic framework, contributions and illustrations are however harder to
find, both from a theoretical and a practical point of view. The aim of this thesis is to see how
the notion of endogeneity and the concept of Instrumental Variables could be extended from static
variables to processes such as diffusions, counting processes and duration models.

5



The motivations and the origins of such a question may be found in observational studies (as in medi-
cine, economics, or social studies) where experimentation is not possible. When experimentation is
possible, identical conditions for an experience may be recreated and repeated. The causal effect of an
explanatory variable is then estimated as the average response of the outcome of interest to different
manipulations of the explanatory variable. In presence of endogeneity, experimentation is generally
not possible since the explanatory variable cannot be manipulated. Any relationship estimated be-
tween the outcome and the explanatory variable must take into account this potential endogeneity.
If not, any ”what-if” scenario would be totally pointless. In order to estimate a causal effect in this
case, the average response of the outcome of interest must be conceived as the difference between
counterfactual situations. The manipulation of the explanatory variable is only hypothetical, as two
counterfactual situations cannot be observed in the same time. The notion of counterfactual is one
of the salient features of the work of James Heckman, Nobel Prize in 2004. We detail this notion in
Section 1.1.2.1.

This is even more complex when the explanatory variable takes the form of a process that affects
through time the outcome of interest, namely an other process. In medical studies, this outcome
process may be a level of contamination, a degree of illness, or a duration process underlying a time-
to-recovery. The aim of a causal analysis would be to estimate the causal effect of the so-called
explanatory process that could dynamically influence this outcome. Examples for this explanatory
process may be the level of drug or treatment given to the patient. When experimentation is possible,
the treatment is totally controlled in the sense that the path of the dynamic treatment may be prelim-
inary and arbitrarily fixed according to a given scheme. The causal effect is not difficult to estimate,
simply because as expressed before, the difference between two different paths of treatment would be
directly observable. Conversely, in situations of endogeneity, the explanatory process influences the
outcome but its path is not arbitrarily assigned. Most of the time, the treatment is chosen according
to the patient status but also according to its probability to recover, then anticipating on the potential
response of the patient to the given treatment. This explains how endogeneity arises.

Some attempts to circumvent such biases have been made, for instance G-computation, that is detailed
in Section 1.2.3.3. Those attempts are however very specific and focus on a particular use. We aim to
be more general and to give a whole framework for the use of Instrumental Variables in this context.
This is the main objective of this work as developed in Chapter 2. Chapter 2 concentrates the main
theoretical novelties of this work. In particular, we will see that in the particular case of duration
models, the translation of the concept of endogeneity implies unusual assumptions and sophisticated
resolution involving Inverse Problems.

We will also be interested in practical examples where endogeneity lies in a dynamic context. The
study of financial, speculative funds called Hedge Funds will provide us with such an illustration. With
specific regulation and unusual investment practices, those funds are very particular in the financial
industry and constitute a well-adapted source of study for the econometrician. In this perspective,
Chapter 3 precisely reviews the biases and the specificities of the study of processes driving the pres-
ence of Hedge Funds in commercial databases. This step is mostly empirical but is crucial in the
understanding of all the variables involved in the econometric study of such funds. Improving the
current knowledge upon databases by adding new statistical findings to the existing literature is then
a natural objective.



The clearest application of the theory developed in Chapter 2 will be provided in Chapter 4. The study
of a non-conventional variable (called lockup) will be enlightening as we will show that this variable
is endogenous and has an influence on the the lifetime of a fund. We develop a genuine framework of
causal analysis to study the impact of this variable. Our approach and our findings are at the opposite
of the results of the classical literature on the subject, but perfectly illustrates the endogeneity issue in
a dynamic context. It also clarifies the ambiguity that may exist between conditional duration models
and the structural approach we propose.

Our last chapter is quite disconnected from the previous chapters. It is however included in this man-
uscript as the link arises however through the use of Inverse Problem theory, already used in Chapter
2. We will show that this theory may be very useful to provide convenient readings of traditional
financial problems such as the one presented in Chapter 5: portfolio allocation. If the endogenous
topic is not present in this last chapter, some new findings will be however presented.

In this introduction, we will try to present and link the basics of the several problems tackled in this
manuscript. The variety of the subjects (endogeneity, processes, inverse problems and Hedge Funds)
will maybe make this introducing section a bit heterogeneous. We do not aim to be exhaustive on each
topic, but we will mainly try to present each one along with a review of literature. In this respect,
Section 1.1 tries to draw the connections between endogeneity, structural models, counterfactuals and
causal analysis. In order to precise the field of application of our work, Section 1.2 will explore the
classes of processes that are adapted to our analysis. Inverse Problems and regularization will be
presented in Section 1.3. Finally, Section 1.4 focus on the presentation of Hedge Funds, their nature
and specificities. Most of all, we try to highlight why their specific features lead to studies where
endogeneity is omnipresent, and why the dynamic nature of the modelling is also a key point.

1.1 Endogeneity

1.1.1 Definition and examples

Giving an intuitive definition of endogeneity is difficult. The concept of exogeneity is better mastered
and endogeneity is often presented as its alternative, or the situation where exogeneity assumptions
do not hold. When studying the relation between a random variable Y and explanatory variables
Z, econometric models are mainly interested in the mechanism that allows to analyze, predict or
reproduce Y given Z, up to a random perturbation term U that impacts this mechanism. U may
encompass the influence of unobservable disturbances and variables. Inference is possible only if some
assumptions on U are made, as this perturbation is unobservable. Exogeneity specifies that Z and U
must be sufficiently independent for inference to hold. Depending on the model, the strength of the
independence assumption will also drive identification and unicity of the representation. In this case,
the purpose of the analysis is to identify the conditional distribution of Y |Z or a transformation of it.

Example 1.1.1. Linear regression model - The usual linear model assumes that Y = Zβ0 + U

and U is supposed to be orthogonal to Z i.e. E[ZU ] = 0. In the following examples we will assume that
E[U ] = 0. In this case it is well known that the Ordinary Least Squares (henceforth OLS) estimate
β̂0 of β0 obtained as the minimizer of ||Y − Zβ||2, is unbiased and equal to β̂0 = (Z ′Z)−1Z ′Y .



Example 1.1.2. Nonlinear separable regression model - This is the nonlinear equivalent of
Example 1.1.1 as it is assumed that Y = φ(Z) + U where E[ZU ] = 0 is now replaced by the stronger
assumption E[U |Z] = 0. In this case φ is equal to the conditional expectation of Y given Z:

E[Y |Z] = E[φ(Z) + U |Z] = E[φ(Z)|Z] = φ(Z).

Example 1.1.3. Nonlinear nonseparable regression model - Here the relationship between
Y , Z and U is very general. Assuming E[U |Z] = 0 is not sufficient. In addition to Y = φ(Z,U), it
is required that Z ⊥⊥ U . In this case, φ describes the whole distribution of Y conditional on Z. A
crucial assumption is that for a given Z = z, u 7→ φ(z, u) has to be monotonous. This can also be
related to quantile regression methods.

The endogeneity diagnosis is not easy: causes are various and sources of endogeneity often rely out
of the control of the econometrician. Historically, the initial modelling of endogeneity has arisen
in the context of simultaneous equations, where a system of equations jointly determines the out-
come/dependent variable and the explanatory variables. Then, the explanatory variables are inter-
nally (or endogenously) determined. An economic example is straightforward in models of demand
and supply where the price of a good is jointly determined by two equations. Other examples arise in
social policy evaluation, or educational programs, where explanatory variables are affected or driven
by choices, anticipations, or (unobservable) characteristics of individuals.

1.1.2 Resolution

1.1.2.1 Why solving for endogeneity?

Without a control of endogeneity, estimations are biased: it is quite difficult to isolate the effect of
the endogenous, explanatory variable Z as the variations of Z affect the outcome also via the noise
term. An other crucial consequence is that most of the time, with the estimated model, we cannot
consider that Z plays an “arbitrary” role. Z cannot be conceived as being randomized or conceptually
fixed in an observational study. We cannot make any “what-if” analysis on Y based on a description
of its conditional distribution given Z. Mathematically, the data generating process that generates
Z cannot be ignored. This is a major difference with the exogeneity situation, where the conditional
distribution of Y |Z incorporates all the necessary information for inference purposes. Y |Z is easy to
estimate, but insufficient in a ”manipulation” perspective if we conceive Z as being assigned. For
instance, for the policymaker in social experiments, this is a major drawback as evaluating the causal
effect of a policy discarding endogeneity biases is nearly impossible.

In this respect, endogeneity is tightly linked to the treatment effect literature. A treatment effect
may be estimated as soon as acting on a cause of an outcome of interest, the response in the outcome
differs under two different level of treatment (determined at the same time, and under the same condi-
tions). This finds a natural application in causal analysis ranging from medicine (the effect of a drug
treatment) to social sciences (response of an individual to a social program). Evidently, this would
be tempting for individuals with given characteristics, generating outcomes Y , to evaluate the whole
response pattern in Y to a whole range of values of the treatment. Unfortunately, this is most of the
time impossible in observational studies, because it will be unrealistic in most situations to repeat the



experiment several times for various values of the treatment, for individuals with unchanged charac-
teristics. Especially in medicine, it is not possible to analyze the effect of a treatment on the survival
of a patient without affecting its status. Going back in the past to make a new experiment with a new
treatment level is not possible. Practically, effective treatments take into account the current patient
status and are therefore depending on its anticipated evolution.

The hypothetical assignment of a treatment to a conceptual value (or conceptual path if it’s a time-
varying process) is known as being a counterfactual approach. Counterfactuals are therefore related
to causal relationships since a treatment effect is the difference between two conceptual situations
(treatment and no treatment) i.e. two counterfactuals. They are the object of a heavy literature
and their understanding is sometimes difficult. An introduction could be given by Heckman (2001).
They are original in that they do not need to explicit any intervention or manipulation mechanism,
and may be viewed as “hypothetical worlds”. However, causal statements or treatment estimation
must stem from a fully defined structural model with precise counterfactual issues, but also with a
scheme allowing variations in the causes whose effect is under study. As explained in Heckman and
Vytlacil (2007), “models are descriptions of hypothetical worlds obtained by varying - hypothetically -
the factors determining outcomes.” When the schemes that drive the outcome selection are not part
of the model, we are in a randomization framework. Consequently, the aim of the econometrician
working with counterfactuals is to “provide a forecast of effects of interventions that have never been
experienced before”. This being done by “using relationships between unobservables in the outcome
and the selection mechanisms”.

We just gave some explanations concerning counterfactuals that will be reviewed later. A compre-
hensive discussion on the philosophical (and historical) aspects and the implications of the use of
counterfactuals in causal evaluation is provided in Kluve (2004). A more general review of counterfac-
tuals but also of related methods used for causal inference (with a focus on econometrics) is provided
in Morgan and Winship (2007). We must retain that the curse of endogeneity is that we cannot
consider the assignment mechanism of the explanatory variables as being random, as the explanatory
variable is still correlated with the unobserved characteristics. But how to break this dependence?

1.1.2.2 Instrumental Variables (IV)

A central method in the literature is the Instrumental Variables (IV) framework. An IV (or alterna-
tively an instrument) W is a set of auxiliary variables that affect the explanatory variable and the
outcome, but only through the channel of the regressors. We have to formulate exclusion assumptions:
independence assumptions between U and Z are therefore replaced by conditional independence as-
sumptions of U and Z given W . IV are particularly suited when the relation between the outcome
Y and the variable Z is more difficult to model than the relation between Y or Z and the chosen
instrument. An other situation is when Z is not directly observable, but only through a proxy, or a
function of it. The idea is to capture the effect on Y of variations on Z generated by variations in the
instrument that only affect Z.

Example 1.1.1 (followed) - E[ZU ] = 0 may not be assumed: it is replaced by the orthogonality
condition E[WU ] = 01. The estimators that are derived are the Indirect Least Squares estimators.
Discussions on identification are important and imply mainly conditions on the dimension of the in-

1A GMM view of the IV estimator is therefore possible through this condition.



struments and on the rank of E[WZ]. In case of over-identification, the estimator is obtained by
choosing a linear combination of IV of appropriate dimension. This leads to the setting of the Two
Stages Least Squares estimator (henceforth 2SLS) where this combination is chosen in order to get the
estimator with the smallest variance. For 2SLS, E[WU ] = 0 is exploited through the implied property
that E[PW (Z)U ] = E[Π1ZU ] = 0 with PW the linear projection onto W and Π̂1 = (W ′W )−1W ′Z.
For the 2SLS estimator, the obtained expression is β̂ = (Ẑ ′Z)−1Ẑ ′Y with Ẑ = ZΠ̂1. In practice,
this estimator is obtained as the OLS regression of Y on the re-estimated version of Z obtained by a
first OLS regression of Z onto W . If Z has exogenous components they must be incorporated in the
set of instruments (in particular the constant term). More generally, the linear form for U may be
replaced by a nonlinear, parametric form (providing nonlinear two-stage least squares and generalized
instrumental variables approaches).

In the particular case of simultaneous equations, variables are interrelated so that endogenous vari-
ables may appear both as outcomes and as explanatory variables. Starting with a structural form
of the system, the reduced form of the system is obtained by eliminating the endogenous variables
between the several equations. Using OLS is only possible if the reduced form is recursive: the en-
dogenous variable appears as an explanatory variable only if it’s also the left-hand side of a former
equation. This more simple writing is also the core of triangular systems. In all cases however, the
method is the same: whatever the form of the model or its complexity, exclusion restrictions have to be
formulated between variables, instruments and residuals. The estimators derive from those conditions.

Example 1.1.2 (followed) - Florens et al. (2009) consider a semi-parametric model:

Y = Xβ + ψ(Z) + U (1.1)

where (X,Z) are endogenous. A more generic nonlinear separable model would be:

Y = φ(Z) + U (1.2)

where Z is endogenous. Darolles et al. (2010a) and Ai and Chen (2003) tackle such model (adopting
in fact a semiparametric approach, in the sense that φ is more structured, possibly with parametric
components such as φ = φ(Z, β, θ)). Both 1.1 and 1.2 lead to a resolution implying to solve for an
integral equation. Both models assume the existence of IV W such that E[U |W ] = 0 . Consequently,
ψ and β are the solution of:

E[Y |W ] = E[ψ(Z)|W ] + E[Xβ|W ]

whereas in Equation (1.2), φ is the solution of:

E[Y |W ] = E[φ(Z)|W ].

Resolution of such equations involves in practice nonparametric estimation of conditional expectations.

Example 1.1.3 (followed) - The case where the model is nonseparable in the perturbation U as
been discussed e.g. in Matzkin (2003) or Chernozhukov et al. (2007b). Working with endogenous
regressors, the perturbation is assumed to be independent from the instruments W . The function
of interest has to be monotonic in the perturbation. With a scalar perturbation, the model leads to



conditional quantile restrictions. Assuming that Y = φ(Z,U) with U ⊥⊥W (φ monotonic in U) for a
fixed Z = z, the ρ-quantile of φ(z, U) is equal to φ(z, qρ) where qρ is the ρ-quantile of the marginal of
U . If U is assumed uniform on [0; 1], and q(z, ρ) is the ρ-quantile of the distribution of the outcome
interest if Z could be assigned to z, the equation that must be solved is P[Y ≤ q(Z, ρ)|W ] = ρ.
Chernozhukov and Hansen (2005, 2006) adopt a more general framework as they work with a pertur-
bation that is not restricted to the scalar case; they adapt their setting to the analysis of treatment
effects, explicit the statistical properties of the estimators, and build tests. Identification is obtained
through completeness conditions. Chernozhukov et al. (2007b) obtains local identification through a
completeness condition involving the conditional density towards the instrument. Chernozhukov and
Hansen (2005) are interested in global identification and develop sophisticated conditions, which rely
again on completeness conditions.

Finally, a recent contribution of Hoderlein and Mammen (2007) is interested in describing functionals
of the structural nonseparable model of interest (conditional expectations of the derivatives of φ) that
remain identifiable in the scalar case with relaxed assumptions on φ which is no more assumed to be
monotonic.

1.1.2.3 Other methods

Other methods exist to solve for endogeneity but they generally still involve additional variables that
play a role similar to instruments (see e.g. Blundell and Powell (2003) for a complete presentation and
the way they may be extended to semi- and nonparametric models). Among them are the fitted value
and the control functions approaches. They share the same philosophy as in addition to IV, they
may be seen as three interpretations of the 2SLS framework with supplementary variables W . Fitted
values replace Z by its component that is uncorrelated with the perturbation. For a linear model the
fitted values are the linear projection of Z unto W : PW (Z) = (Z ′Z)−1Z ′W . The residuals that are
computed are V = Z − PW (Z). For the estimation of β in Y = βZ + U , the exclusion condition that
is used is E[PW (Z)(U + V ′β)] = 0. In a more general model, PW (Z) is replaced by E[Z|W ] with the
additional assumption that E[U |W ] = 0, potentially strengthened in (U, V ) ⊥⊥ W . E[Z|W ] may be
estimated nonparametrically and is here again re-injected in the structural equation. The efficiency
of the method depends in particular of the form of the model and of its linearity.

Control functions also use additional variables and first-stage residuals to control for the endogeneity
of explanatory variables. The seminal idea of control functions is that in the 2SLS framework, the
estimated coefficient is also the coefficient of Z in the regression of Y on [Z;V ] where V is the first
stage residual of the regression of Z onto W . In the linear situation, the structural equations ex-
ploited here are the consequences of E[WU ] = 0 that are PZ,W (U) = PV (U) or PZ,W (U) = PZ,V (U).
Those conditions are strengthened into E[U |Z,W ] = E[U, V ] for a nonparametric separable model,
and into U |Z,W ∼ U |V for a nonparametric nonseparable model. The linear form of the residuals
V = Z − E[Z|W ] may also be replaced by any functional of Y, Z,W that respects the structural
equations we just indicated. This makes possible to use such a method for instance with simultaneous
equations models with no reduced form.

The most important are the common features shared by instrumental variables, control functions and
fitted values. They require additional variables (the instruments) that are related to the outcome only



through the explanatory variables. For this, estimation is then always possible after some independence
assumptions are made between the instruments and the perturbation. The strength of the assumption
depends on the model, its linearity and its sophistication. This assumption also defines the structural
equation(s) that will be used to estimate the parameters of interest of the model. Those latter are then
solutions of integral equations as conditional expectations are often involved. Finally, let’s conclude
by highlighting that any test of endogeneity should involve instruments. In the linear case, this is
done by the Hausman test. More generally, the idea is to compare the conditional mean E[Y |Z]
with ψ(Z) solution of the moment equation E[Y − ψ(Z)|W ] = 0 for a given set of instruments W .
ψ(Z) and E[Y |Z] should be different in an endogenous situation. This is different from controlling for
the omission2 of a variable as an endogeneity test allows the conditional mean of U |Z to vary with
W . To test the validity of the instruments, in the linear case, the Sargan test regresses the residuals
e = Y −ZβIV on the instruments and tests whether the corresponding coefficients are significative or
not (null hypothesis if the instruments are valid).

1.2 Mathematical Framework

Our aim is to study a class of processes satisfying some minimal regularity conditions, while being
sufficiently large to cover practical applications such as duration models. To do this, we will be
interested in special semi-martingales.

1.2.1 Some definitions

Let (Xt)t≥0 (t discrete or continuous) a process adapted to a filtration of σ-fields Ft such that (Xt)
is càdlàg (its trajectories are right-continuous and have a left-limit) and that Ft is right-continuous
(that is to say for a given t ≥ 0, Ft =

⋂
s<t Fs). For such processes that are adapted and càdlàg,

the notion of semi-martingale, classical semi-martingale and decomposable processes are unified (see
Protter (2003, chap.3, p.102)).

(Xt) is a classical semi-martignale w.r.t. filtration Ft if there exists two processes Ht and Mt such
that:

Xt = X0 +Ht +Mt (1.3)

where Ht is Ft-predictable and Mt is an Ft-martingale.

We will retain this result under the name of Doob-Meyer decomposition even if a more general
definition should assume that Mt is a local martingale and that Ht is only a finite variation process.
However, we will restrict ourselves in the following to the case where Mt is a martingale, for sake of
simplicity but extensions of the present work should be possible. We will also assume that X0 = 0.
The hypothesis that Ht is predictable ensures in fact that 1.3 is almost surely unique. These concepts
are fundamental in the theory of stochastic processes, see in particular Dellacherie and Meyer (1971,
vol.2,chap.7).

2An omitted variable test would require stronger assumptions on the error term, that is that P(E[U |Z, W ] =

E[U |Z]) = 1 against P(E[U |Z, W ] = E[U |Z]) < 1 (see Blundell and Horowitz (2007)).



1.2.1.1 Example 1: discrete time models

When t is discrete, one may write for t ∈ N∗ (Protter (2003, chap.3)):

Xt = Ht +Mt

Ht = Ht−1 + (E[Xt|Ft−1]−Xt−1) , Mt = Mt−1 + (Xt − E[Xt|Ft−1]) , M0 = 0.

Moreover, if we note, ∆Xt = Xt −Xt−1, we may also write:

∆Xt = (E[Xt|Ft−1]−Xt−1) + (Xt − E[Xt|Ft−1]).

1.2.1.2 Example 2: continuous time models

For continuous-time processes, we will concentrate our study on processes that may be written:

dXt = htdt+ dMt

where Ht =
∫ t

0
hsds. This will give us access to two main classes of processes: diffusions and counting

processes. These two particular cases will be analyzed in details. Diffusion encompasses the cases
where dMt = σtdBt where Bt is a Brownian motion (see e.g. Gard (1988)) and ht and σt are
respectively called the drift and the volatility. When Xt is a counting process, ht will be called the
stochastic intensity (and exists under specific assumptions on the nature of Xt.

1.2.2 Counting Processes

1.2.2.1 Definitions

A simple point process is a sequence of times (Tn)n≥1 of random variables in [0;∞] defined on a filtered
probability space (Ω,F ,P) such as P(limn→∞ Tn = ∞) = 1, P(Tn < Tn+1, Tn < ∞) = 1 for each
n ∈ N, and P(0 < T1 ≤ T2 . . .) = 1. By definition, there are no event at the time origin and only a
finite number of events can happen in a finite time interval. One may associate to a sequence (Tn)n≥1

the counting process (Nt)t≥0 of the number of events within [0; t], which may be characterized by the
following form:

Nt =
∞∑

n=1

1t≥Ti .

The internal history of the process is FN
t = {Ns|0 ≤ s ≤ t}, potentially augmented with the null sets.

As a FN
t -adapted process, a counting process is a sub-martingale and thus decomposable with the

Doob-Meyer decomposition as:
Nt = Ht +Mt

where Mt is a martingale and Ht, FN
t -predictable, is the compensator process. We recover the frame-

work of section 1.2.1 (see also Karr (1991, chap.2,p.59), Dellacherie and Meyer (1971)). The existence
of the stochastic intensity process ht (with Ht =

∫ t

0
hsds) is guaranteed as soon as the compensator Ht

is absolutely continuous. The stochastic intensity is also the unique Ft-progressive, positive process,
equal to 0 at t = 0, and such as Nt −

∫ t

0
hsds is a martingale. It is however often required for the

stochastic intensity to be predictable (this being implied in particular by the continuity property).
The minimal set of assumptions concerns the compensator that has to be positive, increasing, equal
to zero at time-origin, predictable and right-continuous (see Jacobsen (2005)).



Protter (2003) explains the conditions for existence of the stochastic intensity : it exists when the
jumps of the counting process are totally unreachables and the process is of locally integrable variation.
This imposes conditions on the nature of the jump times and evidently on the filtration which is used
(recall that the compensator is implicitly depending on the considered filtration). We have also the
following characterization for stochastic intensity (see e.g. Brémaud (1991)):

Definition 1.2.1. - Stochastic intensity
If Nt is a point process, Ft-adapted, and λt a Ft-progressive process, positive, such as:

Nt −
∫ t

0

λudu

is a martingale. Then λu is the stochastic intensity of the process. When it exists, the intensity is
unique.

�

It is worth noticing that Λt =
∫ t

0
λsds is both the compensator of Nt and M2

t . We have also in
Brémaud (1991) the following characterization:

Definition 1.2.2. - Stochastic Intensity (characterization)
If Nt is a point process, Ft-adapted, and λt a Ft-progressive process, positive, such as:

∀t ≥ 0
∫ t

0

λsds <∞ P− a.s.

Then if for all positive, Ft-predictable process φs, the following relation holds:

E
[ ∫ ∞

0

φsdNs

]
= E

[ ∫ ∞

0

φsλsds
]

then Nt has the Ft-intensity λt.

�

If λt is bounded and right-continuous, the stochastic intensity of a point process Nt has the following
interpretation:

h(t) = lim
∆t↘0

1
∆t
P[Nt+∆t −Nt ≥ 1|FN

t ]

and when h(t) is right-continuous, we have moreover 3:

P[Nt+s −Nt|FN
t ] = sh(t) + o(s).

This underlines the local nature of the modeling when using stochastic intensity. We will consider in
the following the class of processes with continuous compensators to guarantee the existence
of the stochastic intensity. An important theorem for those processes is the following:

3It may be found that E[Nt+∆t − Nt|FN
t ] may be replaced by P[Nt+∆t − Nt = 1|FN

t ] or E[Nt+∆t − Nt|FN
t ].

Jacobsen (2005) however underlines that only expression involving Nt+∆t −Nt ≥ 1 makes sense, and that one may be

careful with other interpretations that must impose that limh→0 P[Nt+h −Nt ≥ 2|FN
t ] = 0.



Theorem 1.2.1. - Change of time for an univariate point process

Let Xt be a process with λt, a Ft-intensity, and µt, a Gt-intensity, where Ft and Gt are histories of
Yt with:

FN
t ⊂ Gt ⊂ Ft

We suppose that P-as, we have limt−→∞Xt = ∞. For t ∈ R we define φ(t) the Gt-stopping time such
as: ∫ φ(t)

0

µudu = t

Then the process X̃t = Xφ(t) is a Poisson process with an intensity equal to 1.

�

Finally, the innovation theorem states that for a counting process Nt and two filtrations Ft and Gt

such that FN
t ⊆ Ft ⊆ Gt, we have λFt = E[λGt |Ft− ].

Examples of counting processes

The dead process is a trivial example where the counting process where no event occur in finite time.
There are no jumps and P(T1 = ∞) = 1. The canonical Poisson process is characterized by waiting
times Tn − Tn−1 that are independent and identically distributed following an exponential law of
parameter λ > 0, that is to say for n ∈ N:

P(Nt −Ns = n) =
λ(t− s)n

n!
e−λ(t−s).

In particular its compensator is deterministic. Finally, Cox processes are particular cases of doubly
stochastic Poisson processes. Let L be a positive random variable which is F-measurable. N counting
process on (Ω,F ,P). N follows a Cox process if conditionally on L = λ, N follows a Poisson process of
parameter λ. In this case, the σ(L,FN

t )-compensator is Λt = Lt. As a particular case, the homogenous
Poisson process has a stochastic intensity which is constant (λt = λ, say). The relative events are
totally independent one from the other and this process may be viewed as having no memory, as for two
time-intervals with null intersection, the number of events of each are independent. The increments
of the process are also independent and the number of events occurring in an interval follow a Poisson
law of parameter proportional to the length of the considered interval up to λ.

1.2.3 Duration models

1.2.3.1 Introduction and definitions

A duration τ is the length of a time-period spent by an individual under study in a given state. Dura-
tion models are commonly linked to survival analysis. Generalizations are numerous and this extends
to multi-individual studies, with possibly several states and several reasons for the individuals to leave
their state. The range of applications of duration models is of course wide: medicine, econometrics,
finance, sociology. One may wish to analyze the durations of marriages, the time between two trans-
actions, time to effective treatment, etc. Lancaster (1992), van den Berg (2000) or Kalbfleisch and
Prentice (2002) provide extensive introductions to duration study.



Before the occurrence of the event of interest that defines the duration, an underlying process is present.
Thus the date of observation for instance, makes that observation is not complete for some individuals.
This is censorship (i.e. incompletion of the underlying process that induces the observation of a dura-
tion for endogenous or exogenous reasons): selection bias, date of study, delayed birth, self-selection,
etc. Depending on the nature of this censorship, the analysis will become more sophisticated: crucial
assumptions have to be made upon the potential (in)dependence of the censorship mechanism towards
the data generating process. When censorship occurs at the beginning of the duration (beginning of
the life of the individual) we speak about left-censoring. In the opposite cas, this is right-censoring.
In the following we will mainly focus on individual data, leaving aside tied events or multiple-spell data.

A duration τ must be understood as the event time for a process leaving one state. Throughout
this thesis, we will assume that P(τ = ∞) = 0. The distribution function F of τ will be defined as
F (t) = P(τ ≤ t) for t ≥ 0. Alternatively, the survivor function S corresponds to S(t) = P(τ ≥ t) =
1− F (t) + P(τ = t) for t ≥ 0. The density f of τ is such that:

f(t) =
dF

dt
=
−dS
dt

and F (t) =
∫ t

0

f(u)du

Those functions are also clearly defined for any positive random variable with sufficient regularity. The
integrated (alternatively cumulative) hazard function of τ is denoted Λ(t) : R+ 7→ R+ and satisfies :

Λ(t) =
∫ t

0

f(u)
S(u)

du = −
∫ t

0

dS(u)
S(u)

= −ln(S(t)). (1.4)

When Λ has a time-derivative, this latter is called the hazard rate λ(t) defined via:

λ(t) =
dΛ(t)
dt

=
f(t)
S(t)

= −d ln(S(t))
dt

. (1.5)

The following formulas hold trivially:

S(t) = e−Λ(t) Λ(t) =
∫ t

0

λ(u)du f(t) = λ(t)S(t).

Some examples of parametric distributions for f are the Exponential distribution, Weibull, Gamma
and Generalized Gamma, Singh-Maddala, Lognormal, or Log-logistic.

1.2.3.2 Main models

The hazard rate is intuitive as it models an instantaneous probability to leave the state at t. It is
the natural object of interest of main econometric duration models. Sophistications include most of
the time covariates that may be both static or time-dependent. Two main classes of models may be
introduced. Accelerated failure time models suppose that the covariates will directly affect the event-
time whereas proportional hazard models aim at describing directly on the hazard rate the impact
of the modification of a covariate. Proportional hazard models are in fact a particular case of mixed
proportional hazard models that allow to build models accounting for unobserved heterogeneity. Note
in general that in presence of censoring, the natural filtration, potentially augmented with the covari-
ates processes is not sufficient to describe the intensity process, unless information on the censoring
process is “included” in the filtration.



Generally speaking, it is common when working with static covariates to estimate the model:

Fτ (u|X) = exp(exp(φ(X) + ψ(u)))

where ψ is a known monotonic transformation. This leads to the following regression:

ψ(τ) = φ(X) + V

where V follows an extreme value distribution, independent of X in the exogenous situation. This
is obviously related to quantile regression (see e.g. Matzkin (2003)) but cannot however account for
time-varying covariates or competing risks.

Accelerated failure time (AFT) models

In AFT models, the covariate re-scales the duration variable and modifies the time-scale. In terms
of intensity, λi(t) = φ(X)λ0(φ(X)t) (with φ for instance parametric in X). It may be rewritten
log(τ) = −φ(X) + ε with ε unspecified, having a 0 mean. For example when φ is simply linear, we
recover a model of the form log(τ) = −X ′β + ε. Such a model is particularly adapted to a regression
framework and implies in particular that X is implicitly understood as being static.

Proportional hazard models

The main assumption is to specify for an individual i a general function for λ(t) depending on some
covariates X (potentially dynamic X = X(t)), risk indicators r and other variables U :

λi(t) = φ(t,Xi, ri, Ui).

ri(t) is a left-continuous process, observable, that includes information on the status of the individual
(ri(t) = 1 is the individual is at risk e.g. alive, 0 otherwise). In multiplicative intensity models,
λ(t) = λ0(t)r(t) and can be either parametric or nonparametric for a whole group of individuals.
Here r(t) =

∑
i ri(t) is the number of individuals at risk. In Additive regression model, λi(t) =

ri(t)[β(t)Xi(t)]. The effect on the covariates is for each component itself a function of time. In the
Cox regression model parametric, non- or semi-parametric, for an individual, the individual hazard is
given by:

λi(t) = λ0(t)exp(βXi(t))ri(t).

λ0 is a positive, deterministic function of time, called baseline intensity. This baseline intensity is
multiplied by a scale factor depending on the covariates. Other forms are possible to describe the
relation between the covariates 1+βX, log(1+exp(βX)) for instance. As stated before, the censoring
mechanism may depend on the conditioning covariates, unless all the mechanism is fully described by
those covariates and depends on no other form of randomness.

Applying Theorem 1.2.1 we get that Λ(τ) is distributed as an exponential variable. This imply that
with static variables, and a Cox intensity model, we get that log(Λ0(τ)) = −X ′β + ε where Λ0 is the
integral of λ0. This is different from the AFT model since in general β may be estimated with Λ0

unknown, but ε is then specified, following an EV1 (extreme value) distribution (f(ε) = eεe−exp(ε)).
Consequently, this approach is not a particular case of the AFT model. In particular, this makes it
easy to test whether the chosen model for the intensity is appropriated.



Unobserved heterogeneity (mixed proportional hazard)

In fact, proportional hazard models are particular cases of mixed proportional hazard models (MPH).
In this kind of model, a time-independent term, function of unobserved explanatory variables, mul-
tiplies the intensity model. For example: λ(t) = λ0(t)exp(βX(t))U . In this case, log(Λ0(τ)) =
−X ′β + ε − log(U). U is an idiosyncratic unobservable variable that accounts for individual charac-
teristics that cannot be observed. They are sometimes known also as frailty models. Those models
are interesting in the sense that in an heterogenous population, even with a common monotonous
baseline λ0, the resulting hazard rate at the population level may show an inverted monotonicity.
This model highlights that studying the hazard rate at the population level, it is sometimes difficult
to understand if the behavior of the hazard rate is mainly driven by evolution of the covariates or by
structural, unobservable differences between the individuals. However, conditioning upon U allows to
deal with proportional hazard models in an unchanged way. That’s why for practical use, both the
hazard and the heterogeneity distribution are taken as being parametric under a multiplicative form.
However, discussion on the nonparametric identification arising with unobserved heterogeneity is a dif-
ficult topic which is the subject of a wide stream of literature, and is particularly hard to achieve with
single-spell data. This is for instance discussed in Heckman and Singer (1984) and van den Berg (2000).

Frailty models are mathematically convenient and conceptually appealing as all the randomness is
left to the idiosyncratic component. As underlined by Heckman (2000) it is generally difficult to
distinguish between effective heterogeneity among individuals, or causal dynamic effects. But the use
of intensities and compensators (via the Doob-Meyer decomposition) makes that even if this model
always relies on the considered filtration (i.e. the information set and the way it includes the past of
the processes) assuming an intensity process is (nearly) always possible. Regardless of the existence of
a possible frailty effect, the whole framework can be expressed thanks to a dynamic intensity model.
Conversely, the opposite approach (from dynamic models to frailty) may also be plausible, but we
must retain that frailty models have an alternative writing with dynamic models (see Aalen et al.
(2008)) but without assuming that any dynamic expression will do it.

1.2.3.3 Endogeneity in duration models

Contrary to other kind of processes, some attempts have been made in order to model endogeneity or at
least to define terminology, at least for time-series and duration models. Mostly for duration models,
some techniques have also been built to deal with treatment effect evaluation in non-randomized
experiments.

Causality in time-series

Concerning time-series, the main attempt of causality modeling is the Granger (or Granger-Schweder)
causality which focus on the influence of the past on the future of the process. If a process Yt is
Gt-adapted with Gt ⊂ Ft, a restatement of Granger’s noncausality (F does not cause Y given G )
in discrete time would be that FZ

t ⊥⊥ Ft−1|Gt−1. This may be used in particular with G = FY and
F = FY ∨ FZ where Zt is an other process. In essence, Zt will not cause Yt in the Granger sense if
the prediction of Y with all predictors is not affected by the absence of presence of Zt in the predictor
set. The Granger causality implies the Sims’ causality which is a stronger concept. See Florens and
Mouchart (1982) for a precise review in discrete time. Extension in continuous time is provided by
Florens and Fougère (1996). F does not weakly globally cause Z given G when for each s, t ∈ R the



conditional expectation of Zt given Fs or Gs is identical. Strong global causality is obtained when
FZ

t ⊥⊥ Fs|Gs. This condition is met when G-martingales are also F-martingales An extension of the
Granger causality concept is weak instantaneous (non)causality. This is verified when the Doob-Meyer
decomposition of the Z process is unchanged for both filtrations F and G. This is in particular equiv-
alent to the F-adaptability of the compensator. In terms of intensity, this can be stated under the
following condition: if λY is the intensity of Y respectively to FY ∨FZ , Zt does not cause Yt is λY is
FY adapted. Strong noncausality is obtained when the Doob-Meyer decomposition also holds for Ft− .

An other approach to study causal analysis in a dynamic context is the framework of graphical
models (via Directed Acyclical Graphs) that try to exhibit more explicit causal relations by making
assumptions on their nature. They state a graphical, causal, scheme of interactions between variables,
events, and potential treatment(s) of the overall model. The idea is then to estimate a model (with
regressions e.g.) for each edge, and to deduce the corresponding total direct, or indirect effects of
variables on others. This approach can evidently be thought with dynamic covariates. They lie far
beyond the scope of this thesis, see Pearl (2000) for a comprehensive introduction.

Time-varying covariates in hazard models

When dealing with duration models, a specific terminology4 has been set-up to deal with dynamic
covariates. This is important since the term endogenous could be confusing. Usually, the following
terminology is adopted. A covariate is fixed if this variable is known for all the time of study. In
mathematical terms, this variable is assumed is F0-measurable (F being here a generic term that
denotes the filtration the whole information set available at time t), or static. This is a particular
case of external covariates that may depend on time and are sometimes called exogenous covariates.
External covariates are defined when the whole relative process is known at the time origin (again, the
covariate process Zt is F0-measurable for each t). Additionally, an ancillary variable is an external
time-dependent variable that is not affected by the occurrences of the underlying event under study.
However, such covariates processes are only Ft-measurable and not F0-measurable. Conversely, other
time-dependent variables are called internal and may be viewed as endogenous. The simplest example
is a variable whose observation is not available after the occurrence of the event (Kalbfleisch and
Prentice (2002, chap.6), or Aalen et al. (2008, chap.4)).

Evaluation of dynamic treatment effects

When trying to understand causality, marginal structural models have been developed to estimate
the causal effect on a time-to-treatment of a dynamically assigned treatment. For this the sequen-
tial randomization assumption is made: at a given date (of treatment assignment), conditionally on
the history of the treatment and of the covariates, treated and untreated are exchangeable. This
assumption is important (yet untestable) since even with unmeasured confounding, it is not possible
to proceed to causal inference as risk-factors (covariates) may predict the treatment status (and recip-
rocally). All the information (necessary to treatment assignation and to individual status that may
help to predict the evolution) is however assumed to be available for the econometric study. There
are both Cox and AFT structural models. They are generally robust to the absence of the rank-
preservation hypothesis which states that with a same history, the rank between time of survival of

4We mention here a work by Chesher (2002) that tries to identify in hazard models functions of interest concerning

endogenous covariates, correlated with an unobserved heterogeneity term that appears under a multiplicative form in

the intensity.



two individuals are preserved under the same treatment and under no treatment. In other words, the
counterfactual time of survival must be conditionally independent5 of the assigned treatment (which
seems fairly natural). They have tight links with G-computation which allows to estimate the causal
parameters. Given a structural model (Cox or AFT e.g.), a parametric quantity Hθ is then accessible
which models the counterfactual survival time under no treatment when θ is equal to the true value of
the causal effect. G-computation then necessitates to model the probability of treatment assignation
conditional on the past of the treatment, the covariate and Hθ (by a probit regression framework e.g.).
Then, under the sequential randomization assumption, Hθ must have no influence in this regression
when θ equals the true value of the causal effect in the structural model. Practically, observations
are weighted with weights estimated on discrete time intervals and that are inversely proportional to
their probability of occurrence. As H expresses with an integral in time that may be sequentially
split, those models are also called nested models. Assumptions are then mainly made on the difference
between the treatment levels rather than directly on the outcome distribution. G-computation is then
linked with counterfactual thinking and may be adapted to continuous-time problems (see also Gill
and Robins (2001), Lok et al. (2004)). Finally, Lok (2008) shows that it is even possible to test for
the presence of a treatment effect without specifying a model for treatment effect. A deep review of
models and assumptions including G-computation and a survey on dynamic discrete choice models is
available in Abbring and Heckman (2008).

Three successive papers of Abbring and van den Berg (2003a,b, 2004) have tackled the problem of
estimating a treatment effect on duration outcomes and their nonparametric identification. They also
deal with dynamic treatments, potentially binary. In this respect they clearly identify the necessity
to deal with a dynamical analysis and to consider durations as resulting from a counting process.
Their main objective is the construction of a whole causal model for the treatment for hypothetical
manipulation of the treatment time assignment. This is the specificity of those papers as they mostly
deal with a timing effect of an endogenous treatment assigned dynamically. Identification is however
mostly handled with time-invariant covariates. Abbring and van den Berg (2003b) underlines that
“instrumental variables (or, better, processes), if available, may enable identification” of causal effects.
This is a supplementary argument for trying to model endogeneity through instrumental variables in
a dynamic context.

Finally, our model will share some motivations with the work developed in Bijwaard (2007, 2008),
whose aims are to propose an estimation procedure (called IVLR for Instrumental Variable Linear
Rank estimator) in order to evaluate treatment effects in studies where outcomes are durations, and
where dynamic treatments in continuous time are considered. A GAFT (Generalized Accelerated
Failure Time) model, encompassing AFT and MPH models is used to model the hazard intensity and
the treatment effect is estimated via the shift on the quantiles of the transformed durations (and then,
shares in this aspect some similarities with the work of Lok (2008)). They derive an estimator by
making independence assumptions between instrumental variables and the laws of integrated hazards
among control and treated groups in the population. Our approach has in common with theirs that:
durations are understood within a counting process context; continuous treatments are considered;
independence assumptions with instruments involve the integrated hazard (compensator). However
we differ in that: we consider general forms of endogenous filtrations, to redefine endogeneity under a
broader form, not only for binary time-continuous processes; we do not model any control group and

5Lok (2008) strengthens this assumption in a time-continuous context.



do not make any assumption on rank preservation properties, which leads to different independence
assumptions between compensators and instruments; the parametric form of intensities are relevant
for estimation, not modeling; most importantly, our endogenous processes will not be assumed to
be predetermined: deep discussions on adaptation and measurability conditions will be necessary,
as an endogenous treatment may also be dynamically assigned, depending on anticipated (dynamic)
outcomes.

1.3 Inverse problems in econometrics

Inverse problems are at the heart of many fields of scientific interest ranging from astronomy to
quantum physics. They are particularly adapted to the resolution of econometric problems with non-
parametric estimation, and then to the resolution of endogeneity in nonlinear models: this motivates
the forthcoming introduction. Their usefulness will appear clear in the next chapters. In Chapter 2,
we will see that the resolution of our problem of interest needs the theory of Inverse Problems. In
Chapter 5, we will see that they provide a convenient way of interpreting specific financial problems. A
complete mathematical presentation would be impossible: we present here the minimal yet necessary
mathematical background and refer to Engl et al. (1996) and Kaltenbacher et al. (2008) for exhaustive
readings. A complement is however proposed in Appendix A.2.

1.3.1 Motivations

1.3.1.1 Definition of inverse problems

Suppose that we dispose of indirect observations y that arise as the transformations of an object of
interest f that we wish to identify. This object is usually a vector or a function. The transformations
on f are represented by the application of an operator T to f :

Tf = y. (1.6)

We wish to estimate f after having observed y, possibly through noisy observations. All the difficul-
ties may come from what we really know, observe, or have to estimate. Either T , y, or both, may be
unknown. A classical dichotomy between well-posed and ill-posed inverse problem has been stated by
Hadamard. A problem is well-posed if three conditions are fulfilled: there is at least one solution to
the problem (existence); this solution is unique (unicity); the solution f depends continuously of
the data y (stability).

The two first conditions are not usually difficult to obtain. The last condition may be the hardest to
verify in practice 6. As soon as T−1 is unbounded any small perturbation in y → y+ δ is dramatically
amplified. As the solution is estimated through T−1(y + δ), if we do not have any control on δ the
estimated solution may be far different from the true one. The definition of the statistical properties
of the noise is then a topic of utmost importance. Depending on the problem, this perturbation may
appear in y but also in T .

6Historically, solutions were believed to always depend continuously on the data. In case of instability, the blame was

put on the mathematical model, assumed to be inappropriate, the problem being then ill-posed. Since y is observed, the

existence of a solution is not the main obstacle. The unicity of the solution is less easy to deal with. If Ker(T ) 6= {0}
and f0 is a solution, each fε ∈ Ker(T )\{0} is such that f0 + fε is solution of (1.6) different from f0. To assess unicity,

one can first check the statistical conditions under which T is effectively injective, or one can add some conditions or

information on the desired solution.



1.3.1.2 Inverse problems in econometrics

Numerous problems in econometrics appear to be inverse ones. A precise mathematical description
of linear econometric inverse problems is provided in Carrasco et al. (2003b), including the general-
ized method of moments, deconvolution, instrumental variables, or general additive regression models.
Other problems in adjacent domains such as economics express also as inverse ones (differential equa-
tions, game theoretic models, etc.). A large bulk of literature focuses on the study of inverse problems
involving instrumental variables. As previously expressed, estimation using IV is possible through
conditional restrictions or moment equations involving instruments. The object of interest is therefore
defined through an integral equation, with the left-hand side acting on the object to be estimated, and
the right-hand side known or not. The obtained equation, and the operator defined by the integral
equation depends on the problem: for nonlinear and general problems, as the expectation operator
(conditionally to the instrument) is often involved, nonparametric estimation is commonly needed.

In separable regression models, contributions are numerous. For the standard model Y = φ(Z) + U

with Z endogenous and a set W of IV, Darolles et al. (2010a) clearly identifies φ as the solution of
the inverse problem E[φ(Z)|W ] = E[Y |W ], as the primal condition that is exploited is E[U |W ] = 0.
Operators E[...|W ] are nonparametrically estimated, and the identification issue is tackled. A similar
approach is developed in Newey and Powell (2003) and in Hall and Horowitz (2005). A review of semi-
and nonparametric methods for (mainly separable) regression models with endogenous explanatory
variables is available in Blundell and Powell (2003). Florens et al. (2009) extend this approach to
partially linear models such as Y = Xβ + φ(Z) + U (X and Z endogenous) with instruments W .
They study both consistency of the estimators of β and φ and their rate of convergence, depending
on the potential specification error on the other parameter of interest. They also provide convinc-
ing simulations. For further mathematical reading on the link between IV and inverse problems in
structural econometrics, see also Florens (2003). Finally, when the restriction E[U |W ] is replaced
by conditions such as P[U ≤ 0|W ] = q, this define new integral equations which are at the heart of
quantile regression models with endogenous variables. This kind of model is in particular studied by
Horowitz and Lee (2007) and Chernozhukov et al. (2007a).

1.3.2 Operators and ill-posedness

1.3.2.1 Linear problems

Inverse problems may be either linear or nonlinear, depending on T . Linear problems are the most
simple way to understand ill-posed inverse problems, but may also be at the heart of the resolution of
nonlinear problems. Let’s suppose that T is a linear operator between two Hilbert spaces T : H → G
which is assumed to be known for the moment, and bounded (thus continuous). The problem is to
estimate f from a noisy version of (1.6): Tf = y + δ where δ is a perturbative error and y + δ is
observed. In a statistical inverse problem δ is considered as stochastic. The inversion of T is then at the
heart of the control of the stability. Closely related to the inversion problem and to the stability topic
is the singular value decomposition of the operator. Examining the spectrum of the operator (when it
exists and may be obtained) allows a precise diagnosis of the magnitude of the stability problem. And
as a particular case, the class of compact operators7 is especially interesting for two reasons: their
spectrum is easily accessible and they appear in numerous problems under mild conditions. In the
following, when T is assumed compact, it is implicitly renamed T = K.

7See definition in Appendix A.2.1 p. 157.



1.3.2.2 Ill-posedness and compacity

Let’s suppose that we work with a linear, compact operator K : H → G between two Hilbert spaces.
In finite dimension (dim(G) < ∞), the injectivity of K is linked to its surjectivity: invertibility and
stability of the inverse are consequently well-mastered. When dim(G) = ∞ and K is a finite range
operator with dim(R(K)) = NK , its singular value expansion8(henceforth SVD) (λk, φk, ψk)k∈N is
finite (finite number of non-zero singular values). The inverse is then bounded and:

K−1φ =
NK∑
k=1

1
λk

< φ,ψk > φk.

In this case the problem is not ill-posed. R(K) is closed as a sub-space of finite dimension of an
infinite dimension space. When dim(R(K)) = ∞, R(K) is non-closed and:

K−1φ =
∞∑

k=1

1
λk

< φ,ψk > φk.

As λn →> 0, we have that K is unbounded and the problem is ill-posed. We can state the following
proposition available in Engl et al. (1996):

If K is compact, dim(G) = ∞, then the problem is ill-posed iff R(K) is non-closed.

The properties of the operator are related to the well/ill-posed nature of the problem. The asymptotic
behavior of the sequence {λk} allows to quantify the degree of ill-posedness of the problem. The faster
the convergence of λk towards 0, the more instable is the problem, and greater is the ill-posedness9.

1.3.2.3 Nonlinear problems

Equation 1.6 also applies for nonlinear problems. One needs in some situations to replace the operator
by a linear counterpart, the Fréchet-derivative. Nonlinear problems are less frequent but we will see in
Section 2.4.1.2 that their framework is sometimes a necessity. Let T : H → G be an operator between
two Banach spaces.

Definition 1.3.1. Fréchet derivative T is Fréchet-differentiable in φ ∈ H if there exists a bounded
linear operator T ′φ : H → G such that:

T (ψ)− T (φ)−
T ′φ(ψ − φ)
||ψ − φ||H

→G 0.

when ψ →6= φ in H.

There are some elementary conditions to ensure that an operator has a Fréchet-derivative, which may
be seen as being a more particular case of the Gateaux-derivative dT , defined as:

dTφ(ψ) = lim
α→0

T (φ+ αψ)− T (φ)
α

.

8See definition in Carrasco et al. (2003b) In many examples, the singular value decomposition is known.
9The terminology is usually the following: if λj = O(j−β), β > 0 the problem is said to be mildly ill-posed; if

λj = O(exp(−βjr)), β > 0, r > 0 the problem is said to be severely ill-posed. The parameter β is the degree of

ill-posedness of the problem.



To ensure that an operator T : H → G is Fréchet-differentiable, it may be sufficient to check some
conditions on its Gateaux-derivative. For this, if φ is any element of R(T ):

• (i) T ′φ is linear for any φ;

• (ii) T ′φ is continuous for every φ;

• (iii) the mapping φ 7→ T ′φ is continuous on H on a ||.||L(H,G) sense (where L(H,G) is the space
of linear functions between H and G).

1.3.3 Regularization

1.3.3.1 Definition

Regularization aims at solving the instability problem in ill-posed situations. The general idea is to
build a sequence (in the sense of n → +∞ where n is the size of the data sample) of well-posed
problems that approximates the initial ill-posed one. It requires parameters quantifying the distance
between the regularized and the raw solution, and rules allowing to choose those parameters. The
focal point in the study of the convergence of the solution is the trade-off between the precision and
the regularity of the solution. In fact, any compact operator is the limit of a sequence of finite-rank
operators (see Engl et al. (1996) or Appendix A.2.1 on p.157): this increases again the interest for
compact operators. y will denote the exact data and yδ is its observed, noisy version, where δ will
quantify the noise level (in practice δ = δn).

Looking for the best-approximate solution10 f† = T †y, we will have access to fδ = T †yδ. The ap-
proximations will be controlled by a regularization parameter α, which will provide stable solutions
fδ

α that depend continuously on yδ. When n → +∞, we expect α = αn → 0 and the regularization
technique to make that fδ

αn
converges towards the true solution. Generally speaking, the estimation

of fδ
α must take into account the nature of the operator T . In this respect, the problem fδ = T †yδ

is replaced by fδ
α = Rαy

δ where {Rα} is a family of continuous (but not necessarily linear) operators
that depends on α. Intuitively, as the amount of noise δ diminishes, the regularizing operators chosen
in {Rα} are “closer to T” (in a sense that has to be precised), and the estimated solution is closer to
the true one.

In fact the choice of a regularization technique and of its parameters must also be linked to the total
noise δ, the observed data yδ, and the operator T . What should also be considered is a priori informa-
tion available on the true data y and most of all on the nature/type of solution that we seek to obtain.
Solutions with minimal norm may be viewed as a selection criterion among the set of solutions, thus
being additional information added in the estimation procedure.

If α is chosen only according to the level of noise δ, and regardless of the observed data, α = α(δ) is
called an a priori parameter choice rule. If α = α(δ, yδ) then it is an a posteriori parameter choice
rule11. A family {Rα} (with Rα continuous ∀α > 0) is a regularization for T † if the convergence of

10The Moore-Penrose (generalized) inverse T †y is the inverse of T obtained by restriction of its range and extension

to D(T †) = R(T ) + R⊥. T †y is the best L2-approximation of the true solution, but in general it does not depend

continuously on the data.
11Methods that depend only on yδ but not on δ cannot be involved in convergent regularization methods. This does

not imply however that such methods may be satisfying at a given, finite δ: this must be understood in an asymptotic

perspective.



Rα towards T † on D(T †) with α → 0 is pointwise. In this situation, for each y ∈ D(T †) there exists
an a priori parameter choice rule α = α(δ) which allows that (Rα, α) is a convergent regularization
method for solving the problem defined by 1.6.

Engl et al. (1996) state that if {Rα} is a family of regularizations, assumed to be linear, with α : R+ →
R+ an a priori parameter choice rule for every y ∈ D(T †), then (Rα, α) is a convergent regularization
method iff :

lim
δ→0

α(δ) = 0

lim
δ→0

δ||Rα(δ)|| = 0.

It is difficult to conclude on the speed of convergence of solutions of ill-posed problems without re-
stricting oneself to specific subsets of solutions, defined via the smoothness of the true solution. Doing
this, we get a precise and accurate control on the speed of convergence of the solution (which then
depends on this condition, see Appendix A.2.2.2 p.158).

The best-approximate solution is also related to the normal equation (see Appendix A.2.2). Applying
the dual of the operator, we recover the problem:

T ∗Tf = T ∗yδ. (1.7)

Then solution f could be computed if we could get the inverse of T ∗T which cannot be obtained
in ill-posed situations. Regularization procedures use functions Fα to provide an estimator f̂α of f
defined as:

f̂δ
α = Fα(T ∗T )T ∗yδ

where Fα depends on the so-called regularization parameter.

1.3.3.2 Regularization methods

We present briefly the main regularization methods in Appendix A.2.3 p.160. We do not aim at being
exhaustive and refer to Engl et al. (1996) and Kaltenbacher et al. (2008) for a complete review. In a
word, spectral cut-off is related to the spectral approach and eliminates the components corresponding
to the lowest eigenvalues. The infinite development is replaced by a finite one. Tikhonov regularization
adds a penalty to the norm of the solution to compensate the non-invertibility of T ∗T . A closed form
expression is obtained when deriving the first-order condition. Some variations exist depending on the
chosen norm used to control the added penalty. Other methods are not direct but iterative. They apply
to linear problems (iterated Tikhonov, Landweber iteration) and also to nonlinear problems (nonlinear
Landweber). For this, the linear counterpart of the operator is used (via the Fréchet-derivative).
Numerous extensions exist (Newton-type methods, etc.).

1.3.3.3 Ill-posedness in econometric problems

The need of regularization methods in econometric problems essentially comes from the frequent oc-
currence of ill-posedness situations is econometric problems. Practically, they arise often with the
nonparametric estimation of conditional expectations. Gagliardini and Scaillet (2009) show precisely
why the problem of instrumental separable regression with nonparametric estimation is ill-posed. To
overcome this difficulty, Darolles et al. (2010a) using kernel estimation, proceed to Tikhonov regular-
ization and obtain a rate of convergence. Gagliardini and Scaillet (2009) use a Sobolev penalty rather



than a L2 penalization for their regularized Tikhonov estimator. Newey and Powell (2003) and Ai and
Chen (2003) restrict the solution to belong to a compact set of functions. Doing this is more stringent
and constraining than using a strict regularization method. The solution is sought as a finite, linear
combination of parametric functions but no rate of convergence is provided. Hall and Horowitz (2005)
use an orthogonal series estimator. Finally, Blundell and Powell (2003) underline that other methods
such as control functions may also lead to ill-posed problems.

We have presented the motivations of our forthcoming analysis, and highlighted the interest of us-
ing instrumental variables when solving for endogeneity. We have also described the framework of
inverse problems that naturally arise as an appropriate tool in those situations. We now turn to the
specification of the processes that will be under study.

1.4 Hedge Funds

Hedge Funds are speculative funds with restricted access / information, with limited regulation (up to
now). Despite their opacity and the interrogations they raise, they manage however trillions of dollars.
They are major participants of the financial industry, and may even impact the stability of markets
in times of crisis. Understanding the mechanisms of Hedge Funds management and the stylized facts
arising in econometric studies of their industry, and particularly the drivers of failure and survivorship,
is then a topic of utmost importance. This section does not aim at providing a comprehensive study
on the Hedge Fund universe (or to promote Hedge Fund investment!): numerous articles, papers,
textbooks, courses, commercial presentations already exist in this perspective. Our objective is rather
to highlight why their specific features build an ideal framework for the econometrician, under many
aspects, and especially to illustrate endogeneity in a dynamic context. The aim of this section is
then to provide a minimal background to understand Hedge Funds and their underlying econometric
challenges.

1.4.1 A first glimpse

1.4.1.1 A difficult definition

Hedge Funds are speculative funds which, as Pension or Mutual Funds, invest on financial markets.
Whereas Pension Funds manage assets of employees getting back money when retiring, Mutual Funds
and Hedge Funds invest on behalf of their clients who pay them for this service. Mutual Funds are
regulated by the Investment Company Acts, but Hedge Funds are private investment partnerships that
have remained for long neither regulated nor monitored by the SEC (Security Exchange Commission,
see p.170). This is consequently difficult to give any “legal” definition, the name of Hedge Fund being
before all assessed by the financial industry.

The first recognized Hedge Fund has been set up by Alfred Winslow Jones in 1949: the first mention
in the press was in Fortune in 1966. The term hedge is a bit confusing as their main vocation is to
speculate for their clients; those clients being funds (Pension Funds, other Hedge Funds, etc.), financial
institutions, endowments or high net worth individuals. Yet, this term reflects the initial strategy of
Winslow Jones who took relative bets by buying under-priced and selling over-priced securities, while
trying to be hedged in the same time from directional market movements. The use of specific financial
techniques (leverage, short-selling, see definitions p.170) is another appealing feature of Hedge Funds,



that differentiates them again from Mutual Funds (see below). This approach remains at the heart
of many Hedge Fund strategies and leads to an empirical/statistical definition of Hedge Funds, that
are assumed to generate specific return distributions. Those distributions are mainly characterized by
high returns, low volatility, and low correlation with traditional financial indices.

1.4.1.2 Hedge Funds strategies

Hedge Funds invest in various asset classes with the help of various financial tools. The population
of funds is an heterogeneous group that may however be separated in several main categories, each
one representing a type of strategy employed by the fund. Let us precise that those categories are not
“registered” in the sense that this classification results from studies and descriptions of academics and
practitioners monitoring the global industry. This explains why the differences between them may
be subtle or vague, since for each fund, strategy is a self-described feature. Categories are described
in more details in Appendix A.4.2. We give however in the paragraphs some insights on the more
important classes of strategies that are represented in the Hedge Fund industry. Five main categories
may be identified12.

(i) Long-Short Equity (or also Equity Hedge) is a category of funds that buy and sell stocks to take
(relative) benefit from over or under-priced assets. Funds are market neutral when the investment is
made in order to immunize the portfolio from market movements. Market neutrality is of course not
confined to Long-Short Equity funds.

(ii) (Global) Macro funds take directional bets on various financial instruments (such as bonds, eq-
uities, stocks, commodities, credit, etc). Long-Short Equity and Global Macro are the two main
historical categories of Hedge Funds. Macro funds are now maybe not so different from Multi-Strategy
funds, and their approach is close to “tactical asset allocation”. Macro funds are generally highly
dynamic, and use a high leverage, with a top-down approach.

(iii) Relative Value is a group of strategies whose objectives are to be immunized against market risk
with various kinds of assets and techniques. Some Relative Value strategies could then be considered
as Long-Short Equity strategies.

(iv) Event-Driven funds are specialized in identifying major events for companies such as merging,
and try to take benefit from it.

According to HFR (2009), those four main strategies represent respectively (and approximatively)
35%, 20%, 25%, and 20% of the industry in terms of assets under management (henceforth AUM, see
definition p.169), and 50%, 18%, 20%, 12% in terms of number of funds (only for single funds).

The last category, (v) Managed Futures, is rather special. They trade futures, using mostly trend-
following strategies. The distinction with CTA (Commodity Trading Advisor) is now blurred. CTA
are trading organizations that have to register with the CFTC (Commodities and Futures Trading
Commission, see p.169), and that make trading decisions for clients, operating on futures or options.
CTA correspond to highly technical trading strategies, use widely technology, and try to exploit ineffi-
ciencies across assets and markets. They are usually separated from the other single funds in databases.

12Of course a fund can combine several strategies: those are Multi-Strategy funds



At this point, we must also mention Funds of Funds (henceforth FoF) that are Hedge Funds investing
in other Hedge Funds. This may be understood as a portfolio where stocks are replaced by Hedge
Funds. They constitute a special category, as opposed to single funds. FoF are diversified, generally
bigger and more diversified (by definition), then claimed to be “safer” than single funds. FoF represent
approximatively 25% of the total number of Hedge Funds.

1.4.2 Specific features

We highlight in this paragraph the specific features of Hedge Funds in their organization (structure,
fees, regulation) and the statistical properties of Hedge Fund returns, that make them so specific
among other market participants.

1.4.2.1 Regulation

A Hedge Fund is often a limited partnership or limited liability company. Formerly, the number of
investors was limited (to one hundred) but this rule has disappeared in the nineties. For long, the reg-
ulation of Hedge Funds has been scarce. The report to the SEC was possible but voluntary. Contrarily
to Mutual Funds, Hedge Funds have a greater flexibility to invest in whatever securities they want: no
standard limitation of sector, industry, or country. They can use leverage and short-selling: the use
of leverage and short-selling is often taken for the empirical definition of Hedge Funds as they appear
to be strong proper features. Hedge Funds that trade futures and options must however register as
a “commodity pool operator” under the CEA (Commodity Exchange Act) by the CFTC (Commodity
and Futures Tranding Commission) and NFA (National Futures Association).

Regulation requirements are currently changing and subject to modification. A former rule set up by
the SEC in 2004 stated that Hedge Funds were expected to register as investment advisors. This rule
applied to US Hedge Funds and to non-US with more than 14 US investors. Funds with less than 25
millions of dollars did not have to comply (see Getmansky (2004)). Regulatory constraints for Hedge
Funds have deeply evolved. In Europe, the AIFMD (Alternative Investment Fund Manager Directive,
November 2010) now rules all the funds that are not concerned by the traditional and common UCITS
norms (see definition p.171): Hedge Funds, Private Equity Funds, Real Estate Funds. This directive
concerns big funds (over 100 millions euros) or funds of more that 500 millions of euros but with no
leverage. Now the concerned funds will have to set a limit on their leverage level and comply from
then. The required capital will be enhanced, so will be risk management requirements and additional
market participants (depositaries) will be involved in their overseeing. In the United States, the equiv-
alent regulating directive will be played by the Dodd-Frank act. SEC and domicile state will share
the registration role depending on the size of the fund. The rule set up by the SEC in 2004 is still
valid. A main evolution is that funds will have to provide the regulator with their trades and portfolios.

Mutual and Hedge Funds differ also by their reporting constraints. Indeed, it is not compulsory for
Hedge Funds to publish their performance. Things are changing fast and in a near future they will
not only have to report their performance, but also their positions, this depending on the size of the
fund. But until now, each Hedge Fund was defining its own rule of reporting, and was potentially
publishing its performances in a database. As the information provided in databases is often missing,
limited or subject to caution, this induces several classical biases that are listed below. This report
relies on their willingness to provide figures, which is not compulsory and is related to the objectives



of the manager. As we will see in Section 1.4.2.4, Hedge Funds have moreover a limited liquidity, and
clients that enter in a Hedge Fund agree to have limited rights. As underlined by Khandani and Lo
(2007), it must be noted that regulation perspectives are in general more focused on the investor’s
interest and protection.

1.4.2.2 Return distribution

Empirically, Hedge Funds have specific return distributions. This depends of the strategy and the
period but some stylized facts are however commonly accepted in the financial industry. Essentially,
Hedge Funds have dynamic trading strategies (sometimes with a very high frequency) and thus a
time-dependent exposure to risk. This creates very unusual profiles of returns. In practice, their
return distributions are deeply non-gaussian and have option-like properties i.e. there exists a non-
linear relationship between Hedge Fund returns and market returns. This stylized fact is particularly
well documented and often constitutes a marketing argument for funds in a commercial perspective.
Depending on the strategy, different option payoffs appear (see Fung and Hsieh (1997a), Boyson et al.
(2010) for further reading).

An other well-known fact has been highlighted by Fung and Hsieh (1997a): proceeding to a factor
analysis on Hedge Fund returns, they identify 5 mutually orthogonal principal components that ex-
plain 43% of the cross sectional return variance. The 5 style factors have been identified through the
self-declared strategies. This kind of analysis is now widespread among practitioners and has led to a
very important semantic for Hedge Funds. A related approach consists in replacing PCA by regression
models where given risk factors (benchmarks of strategies) are taken for regressors. Regressing returns
on risk-factors allow to identify through the constant term (alpha) the specific value added by the
manager, and to the factor coefficients of the regression (beta) the sensitivity of the fund to other risks.
Those coefficients are of course depending on the considered risk-factors (which can be investable or
not) but the terms alternative alpha and alternative beta have remained to qualify the value added
individually by Hedge Funds and the way they are exposed to the market.

As explained by Darolles et al. (2010b), Hedge Funds challenge in fact the usual assumptions on risk-
return trade-off. It is commonly assumed in usual financial semantics that in order to get a superior
performance, a greater risk should be accepted. For stocks, e.g., returns volatility is a common proxy
for risk evaluation. For main Hedge Funds styles, minimizing volatility could lead to higher risk.
Striking examples exist with funds that presented high returns with little volatility just before failure.
But funds manager are also personally concerned with reputation risk (see also Aragon and Nanda
(2009) and Section 1.4.2.3). They are not induced to take more risk, as if they increase their volatility,
they also increase their probability of failure, and then to lower their reputation.

Moreover, Hedge Funds returns show easily some persistence: this serial correlation is for instance
studied in details in Getmansky et al. (2004a). This persistence appears to be more evident for a
quarterly horizon and decreases with time (see Agarwal and Naik (2000)). But if it was possible to
exploit such an auto-correlation, as this is a very well-known empirical fact, fund managers would
have tried for long to make profit with it. They would have taken huge leveraged directional bets, and
this auto-correlation would have disappeared. But it’s not the case and the main argument to explain
this is Hedge Fund (il)liquidity. This argument is developed further in Section 1.4.2.4.



1.4.2.3 Fees and manager’s reputation

Hedge Funds are said to offer a great performance only if the investor is ready to pay for it. This
“price” for the investor is both in terms of fees but also in terms of impediments of the investment
(opacity and liquidity). Fees may be of several natures. Darolles and Gouriéroux (2009) give precise
details on the various sophisticated schemes that may exist, and beyond usual presentations, provide
mathematical insights on their consequences in terms of risk and related stylized facts. Fees schemes
vary from one fund to an other, and are contractually defined by Hedge Funds prospectus. They
share however some common patterns, and are proportional to the fund size. Generally, funds take
management fees that are around 1% − 2%. It is a fixed amount asked whatever the performance.
Management fees are used to pay employees, technological investments, computers, and common ex-
penses. Performance fees appear when there is a positive performance: they are around 10 or 20%
of the resulting performance after management fees. As an alternative, over-performance fees often
exist and are generally greater (between 20 and 50% commonly) and are calculated on the surplus of
performance above a given threshold (that may be evolutive) called the hurdle rate.

This is the general picture. However, some particularities (see Appendix A.4.1) in the way they are
collected make them very special. Fees are estimated each month and put on special accounts; but they
are still part of the investment capacity (see definition p.169) and reinvested each month. Generally,
class A accounts are accounts of external clients, and class B accounts are accounts of the company on
which fees are accumulated. Clients know the fees calculation method but are only provided with the
net value of the accounts of class A. Regularly (annually, semi-annually, etc.) the accounts are reset
and fees are collected by the fund. Commonly, a Highwater Mark (see p.169) is included: this indicates
that fees are not collected as long as the level of the investment is below its historic maximal value. An
other possible scheme of fees collection is the Loss Carry Forward scheme (see p.170). Darolles and
Gouriéroux (2009) highlights the asymmetric nature of this remuneration scheme as the way accounts
of class B are constituted may induce an increase of risk taken by the manager, but are detrimental
to client performance. Finally, more confidential schemes implying Provision Accounts also exist (see
p.171). They are special in the sense that they use a third account that acts as a buffer in difficult
times. The account is regularly feeded when the fund has positive returns, but money is taken out to
be transferred to the client account in case of bad performances. Such schemes help in fact to reduce
the fund’s volatility and hide its real underlying risk. Such a mechanism does not explain short-term
persistence of Hedge Funds returns but helps to recover results of Bollen and Pool (2009) on negative
auto-correlation of slight positive returns. This explains why fees collection schemes are really crucial
to understand.

The remuneration of the manager is directly linked to the performance of the fund. This relation is
however asymmetric as the manager earns nothing when the fund is a bad performer, and has positive
earnings in case of good performance. This is a way to ensure the manager to get the best possible
performance. Plantin and Makarov (2011) develop a model that seeks the optimal contract between
the fund manager and the clients, depending on the rights allowed to each one. They justify in par-
ticular the presence of a highwater mark. This asymmetry from the manager’s point of view is also
studied by Holland et al. (2010), who underline the potential hazard of this form of remuneration.
When the value of the fund is below a threshold that does not allow the manager to be paid, there is
a temptation to increase the fund volatility as long as the highwater mark is not reached. More risk
is then taken which links this fact to survivorship. See also Darolles et al. (2010b).



The bigger the fund, the more important the fees, as they are estimated proportionally to the size of
the fund. The temptation for the manager to collect even more capital could be natural. However, the
size of a fund is also linked to its survivorship. Agarwal et al. (2009) show that there is a decreasing
return to scale. Fund’s size and large money-flows can decrease future performance. It’s natural to
think that investors seek good performance, and that they try to invest in good performers, hoping
persistence of positive returns. Managers’ incentives and fees are also often thought as being positive
signals for the investors, as their objectives will then be in-line with those of the manager. It is also
shown that larger size and higher money-flows will induce poor future performance. In the model
of Berk and Green (2004) for active management, performance is deteriorated with inflow of capital:
fund’s size is not compulsory a positive factor for survivorship.

1.4.2.4 Liquidity

“If you thought getting into a HF was tough, try to get out of one.”
The Wall Street Journal13, 10 April 2008).

Fees are not the only constraint in the Hedge Fund universe. A major drawback of Hedge Funds from
the investor’s point of view is their opacity and their lack of transparency, but it’s also their illiquid-
ity. When investing, the client is given few details on the overall strategy of the fund (which does not
prevent him from bad surprises). To give superior performance, Hedge Funds managers claim to use
illiquid securities, that is assets with long maturities, scarce resource, infrequent pricing, seeking new
sources of value.

It is straightforward that if funds invest in illiquid assets, it will be hazardous to allow investors to get
their money back at any moment they want. That’s why funds nearly systematically set share restric-
tions. Their effect and their implications for econometric studies will be intensively studied in Chapter
4. Share restrictions are of several kinds. A lockup is the period, just after investment, during which it
is impossible for the investor to redeem its initial shares. After this period, the investor must notify her
redemption sufficiently in advance before the redemption is processed: this is the redemption notice.
Processing to the redemption is possible only at a given frequency which is the redemption frequency.
It is contractually defined for each fund and may be days, weeks, or months. Finally, gates give the
manager the possibility to discretionary block or fractionate the redemption in particularly hard times.

Two forms of illiquidity exist: first the illiquidity from the investor’s point of view for Hedge Fund
investment; second the illiquidity of some securities that are difficult to purchase for the fund, that
imply a mismatch between demand and supply on some assets. Illiquidity for the investor is com-
monly proxied by share restrictions (see Aragon (2007), Derman (2007), or Sadka (2010)). It implies
a premium for the investor that cannot get out from a low performing fund to enter in a good one.
Derman (2007) estimates that this premium for a 3 years lockup is about 0.16%, comparatively to
a one-year lockup. Aragon (2007) and Teo (2010) underline the role of gates, that diminish ex-post
performance deterioration. But they highlight that ex-ante, this could be an incentive for the manager
to take more risks in terms of liquidity that the manager should have done. Teo (2010) also founds
that portfolios of funds with high liquidity sensitivities outperform others from about 4.63% a year.
This is also confirmed by Sadka (2010) that shows that funds taking more liquidity risks outperform

13This sentence is quite famous and is often quoted in some papers dealing with Hedge Funds.



other up to 6% annually. This paper also shows that in periods of liquidity crises with scarce sup-
ply of assets, strong negative performances can appear. This clearly helps to understand liquidity
as a risk-factor. The lack of liquidity of some traded securities may also explain the stylized fact of
correlation of returns. This is the argument of Getmansky (2004) and Bollen and Pool (2009), who
explain that serial correlation has primarily for cause illiquidity and smoothed returns. It is difficult
to get a fair and quick market price for securities with few trading activity and few supply capacity.
Funds containing illiquid instruments proceed to an estimation of their returns and sometimes skip
little negative returns. Consequently, their returns appear to be smoother than real economic returns,
and their variance is upwardly biased, with more serial correlation.

The liquidity topic also asks the question of the role of Hedge Funds at an aggregated level, and
their influence on the financial industry and the global economy. Fung and Hsieh (1997a), Ben-David
et al. (2010), and Bernanke (2006) all consider Hedge Funds as major liquidity providers for financial
markets. As they invest in illiquid and risky securities, they naturally help to correct mispricing, and
upgrade channels of risk transfer. As they seek superior performance, they also influence research of
new financial techniques and often push for technological innovations. Those features were arguments
for Bernanke (2006) to justify their low level of regulation, as Hedge Funds were seen as helping in
times of crisis. Unfortunately, with the events of 2007 (see below), one must accept the paradoxical
view of Ben-David et al. (2010) that present Hedge Funds in the same time as liquidity providers but
also as destabilizing forces on financial markets. During crises, main contagion channels are essentially
the various forms of (il)liquidity. Boyson et al. (2010) define contagion as the dependence that appears
between the probabilities of extreme events, between various asset classes and Hedge Fund styles that
cannot be explained by linear correlation. This paper also shows that contagion mechanisms are
reinforced when liquidity is reduced. This phenomenon is also sometimes called phase-locking (see
Getmansky (2004)). For a comprehensive study and review on the potential links between Hedge
Funds and systemic risk, the work of Chan et al. (2007) constitutes however a major reference.

1.4.3 The industry

1.4.3.1 Databases: a particular case

As a consequence of the absence of regulation and the lack of information on Hedge Funds, commercial
databases have appeared, raising the interest of investors. TASS, HFR, Eurekahedge, MSCI, Inves-
tHedge, and CISDM are the main examples of commercial databases. From one database to another,
the nature and the quality of the data may vary. They share common drawbacks (see below), and
the imperfect information they carry is of great interest for econometric studies. Additionally, it is
claimed that funds usually report to one (or two) commercial databases at a time. The proportion of
Hedge Funds reporting to the five or six main databases is said to be equal to only few percents. No
database can then pretend to provide a complete picture of the industry.

There is of course a trade-off for reporting or not for funds, as this report is voluntary. As opacity is
a claimed key-factor of the success of Hedge Funds, reporting is in a way a loss of privacy from the
manager’s point of view. This lose of secrecy is in fact weaker for higher frequency or more diversified
strategies (as they manage a great amount of securities, with a quick management of the positions).
Agarwal et al. (2010) identify it but shows that in average, returns distributions of reporting and
non-reporting are not so different. In a multi-database study, with extended sources of information,
they show that self-reporting funds show a deterioration of performance at initial date and final date.



They underline moreover that reporting funds may be not interested by being in contact with all the
kinds of investors that subscribe to databases. Incentives for reporting are in fact stronger for young
funds and medium-sized funds.

1.4.3.2 Famous biases

We summarize here some major biases induced by commercial databases for econometric studies. All
those biases will be reviewed in details in the following chapters as they induce interesting statistical
difficulties through various mechanisms (endogeneity, missing information, self-selection, etc.).

First of all, the selection bias is the more intuitive: as reporting is not compulsory, funds that are not
part of the database will never be observed. Very few studies (except Agarwal et al. (2010)) tackle this
issue as it requires a huge work on data and individual contact to non-reporting funds. Non-reporting
funds cannot be thought as being part of a counterfactual study: an unidentifiable part of the funds’
population is missing in databases that only provide information on funds that desire a commercial
exposition and having survived sufficiently long to contact a database and provide figures. This will
also be discussed in Chapter 3.

This evidently imply an other bias called backfilling : Hedge Funds communicate a posteriori past
performances to databases. For instance, an existing fund in 2007 survives until 2008 and publishes
then a performance relative to the 2007-2008 period. The bias is that we dispose in 2010 of a past
track of its performances, conditionally on the fact that we know that the fund has survived. First,
we miss the funds that have not entered yet the database. Second, the fund controls the length of the
published track: the fund may have selected attractive past returns, or have produced proforma (i.e.
virtual or historically re-estimated) figures. This may also be known as incubation bias.14.

An other related bias is the survivorship bias. Several definitions are possible (Brown et al. (1999),
Fung and Hsieh (2000), Amin and Kat (2002)). One is the difference between average return of all
existing funds at the end of the sample period and the average return of a portfolio containing all the
funds of the sample. A second and more restrictive definition is the difference between the average
return of funds that have specifically survived to all the sample period and the mean return of a port-
folio containing all the funds of the sample. Amin and Kat (2002) shows that estimating quantities
only on survivors induces an upward bias of 2% for average returns (Fung and Hsieh (2006) estimates
this bias to be around 2.5%). The potential consequence for investors interested in Hedge Funds is
then to over-allocate in this asset class. This bias is even more pronounced when considering small
funds (bias that may be close to 5%). For large funds, this bias is close to zero. This confirms that
funds with huge AUM that stop to report are probably not liquidated. Some studies estimate this
bias depending on the investment style, or try to quantify similar effects on higher order moments.
For more developments, see Ackermann et al. (1999) or Liang (2000).

Concomitantly, the liquidation bias is explained by the fact that reporting is sometimes stopped be-
fore the real end of the fund. Bad-performing funds hide their last (poor) returns. The exit reason
from a database will be explored in great details in Chapter 3 but they cannot be all explained by

14Fung and Hsieh (2006) estimates the incubation period as the instant of the highest dropout rate in databases,

equal to 14 months. So they suppress systematically the 14 first months of the return history for statistical studies. We

will review this topic in great details in Chapter 3



pure liquidation. The argument of Getmansky (2004) is for instance that funds with higher AUM can
decide to stop reporting and to close the fund to new investors, rather to attract new clients. A fund
that is too big can erode its performance: the manager may decide to limit its capacity rather than
to experiment a decrease of the returns, and an increase of the probability of liquidation. Even pure
liquidation may be of several kinds, as it may be explained by failure (caused by fraud or by a massive
capital withdrawal) or by closure (the manager thinks that there is no more profit to take with the
current strategies).

Finally, the look-ahead bias arises when studies are made conditional on survival on further consecutive
periods (see Baquero et al. (2005)). This may be a problem also related to the construction of some
Hedge Funds benchmarks whose composition at a given date is made of top-performing funds.

1.4.3.3 A quick overview of the industry

After the initial attempt of Alfred Winslow Jones, interest for Hedge Funds stagnated during the
seventies, because of bear markets and mild results. Some top-performing funds in the eighties made
that Hedge Funds experienced a significant resurgence in popularity. This interest has kept growing
at the beginning of the nineties with a consequent tremendous increase of AUM. Of course, with the
turmoils faced by financial markets since 2007, the exponential growth of the total AUM has been
deeply tampered. At the end of 1994, there were between 1000 and 2000 Hedge Funds, with a global
AUM between 100 and 160 billions of dollars (Fung and Hsieh (1997a)). According to a Tremont
study also quoted in Getmansky (2004), there were in 2003 nearly 5000 single funds (and 1400 FoF)
with 700 billions under management, versus 610 funds and 39 billions under management in 1990. In
2007, Hedge Funds operations were representing around one third of the equity trading volume in the
United States, for a total amount of AUM between 1.5 and 2.0 trillions of US dollars. 2008 has been
the year of worst performances ever, facing negative returns. In June 2008, this amount was estimated
around 1.93 trillions (Sadka (2010)), 1.47 trillions at the end of December 2008 and 1.35 trillions at
the end of July 2009 (Eurekahedge). In 2009, liquidations have accelerated but this will probably not
imply any dramatic change in the fees structure or in the liquidity terms.

With the uprising interest for the world of Hedge Fund, some products or techniques have appeared
that claim to give access to Hedge Fund performances without their drawbacks. Among them are
the Hedge Fund benchmarks and indices. The non-investable indices are in fact more a way to as-
sess the health of the industry, depending on the strategy. They work as a mean index that proxies
the average behavior of precise kind of funds. Investable indices try to mimic non-investable indices
and are commercialized. In practice, they are not so different from an index based on a basket of
funds, and fail to give access to the same performance promoted by non-investable indices. This is
because non-investable indices do not take into account the potential limited capacity of funds, their
liquidity, or transaction costs. An other trend, appeared some years ago, is replication, which is a
set of techniques that claim to give access to Hedge Fund performance by replicating a given profile
of return distribution, without entering any Hedge Fund. The commercialized products are in fact
based on classical multi-investable factor regression of the historical returns of a given fund and aim
at reproducing its performance month by month. More obscure techniques aim at reproducing any
given return profile in average, in a distributional way. This last procedure has many statistical diffi-
culties that are not tackled in the papers advertising for this technique. Details on this are far beyond
this manuscript, we refer to Beare (2009) for a remarkable work of statistical modelling on this subject.



Hedge Funds are not always appealing. It would be too long to explain the circumstances of the
two big crises that have struck the Hedge Fund industry but we can briefly explain their mechanisms
and their consequences. In 1998, Long Term Capital Management (LTCM) encountered severe losses
that led it to liquidation. Managers expected differences in interest rates from several countries to
tighten. Contrarily to this view, default of Russian bonds induced a flight to quality, increasing the gap
between safe and risky bonds. The losses were multiplied by the amount of the leverage, equal here to
nearly 20. Precise explanations are available in Edwards (1999). LTCM failure helped to understand
for the first time that Hedge Funds could have an influence on the global financial stability. The
summer 2007 crisis and its stream of consequences has its sources in the subprime mortgage markets
but it shares with the LTCM crisis a common point: the channels of contagion lie in the leveraged
margin calls. Khandani and Lo (2007) made an impressive contribution to understand the whole
mechanism of the crisis. During summer 2007, banks and funds realized that the probabilities of
default of mortgages used in the pricing of subprime products were deeply under-evaluated. This
changed instantaneously the face-value of the products, creating important margin calls, amplified by
the leverage taken on those positions. To satisfy this sudden need of liquidity, funds have unwinded
huge position on the more liquid assets they got: equities. With massive sell orders, some stocks of
companies that had nothing to do with subprimes saw their price falling suddenly. Other funds with
quantitative automatic trading strategies, mis-interpreted those signals and began to buy stocks that
were falling; this increased the losses of other kind of funds. Case studies of several individual fund
failures (including frauds) are available in Gupta and Kazemi (2008).

1.4.4 Motivations and open questions

Figure 1.1 sums up the empirical observations we have just exposed. Plain arrows describe the as-
sessed links between structural features, investors and managers behavior. Dashed arrows represent
incentives or constraints both for investors and fund managers. A ”+” indicates a positive (or increas-
ing) effect of the variable at the origin of the arrow, on the variable at the opposite side of the arrow.
Conversely, a ”-” indicates a negative (or decreasing) effect. Dashed arrows with question marks
represent links where current analysis is missing or insufficient. Our motivation will be to precise the
nature of those edges. It is straightforward that the main sophistication of this challenge is that this
mechanism is dynamic through time.

In practice, a fund delegates the management of its assets to a fund manager. This manager has
a personal perspective: she is interested in her remuneration but seeks to preserve her reputation,
for the sake of her future career. Her remuneration is proportional to assets and performance. Past
performance help in improving reputation, and future performance is the objective of investors. In-
vestments may be potentially constrained by share restrictions. Potential performance, size and fund
reputation drive the inflows of money whose accumulation defines the AUM.

The dynamical link between AUM and performance is more subtle: when the fund is too big, this may
decrease future performance, as it is a limit to take profit from any arbitrage. The liquidation risk is
the major concern, both for the investor, the fund and the fund manager. A manager whose only focus
is remuneration may potentially increase the investment risks to improve performance. This would in-
crease the liquidation risk, with a potential influence on the reputation risk in case of fund termination.



The questions that still remain are then the following. What is the true influence of fund’s assets and
fund performance through time, on the liquidation risk? Moreover, is liquidation identical to a stop
of report in databases (that are the only mean for the regulator or statisticians to collect informa-
tion)? Those two questions will be addressed in Chapter 3. Finally, what is the role played by share
restrictions and what is their influence of fund liquidation? May share restrictions be considered as
exogenous? This will be the aim of Chapter 4. Again, Hedge Funds are a perfect field of application
to study endogeneity in a dynamic context.

Figure 1.1: A mechanism for Hedge Funds dynamics?



Chapter 2

Endogeneity and Instrumental

Variables in dynamic models

joint work with Jean-Pierre Florens1.

Abstract

The objective of the chapter is to draw the theory of endogeneity in dynamic models in discrete and
continuous time, in particular for diffusions and counting processes. We first provide an extension
of the separable set-up to a separable dynamic framework given in term of semi-martingale decom-
position. Then we define our function of interest as a stopping time for an additional noise process,
whose role is played by a Brownian motion for diffusions, and a Poisson process for counting processes.

1This chapter is adapted from Florens, J.P., Simon, G. (2010), Endogeneity And Instrumental Variables In Dynamic

Models, submitted to Econometrica. Sections 2.4 and 2.5 are however additional developments that do not appear in

the original paper.
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2.1 Introduction

2.1.1 Motivations

An econometric model has often the form of a relation where a random element Y depends on a set of
random elements Z and a random noise U . If Z is exogenous (see for precise definition of this concept
Engle et al. (1983) or Florens and Mouchart (1982)) some independence or non correlation property
is assumed between the Z and the U in order to characterize uniquely the relation. For example, if
the relation has the form Y = φ(Z) + U the condition E[U |Z] = 0 characterizes φ as the conditional
expectation and if Y = φ(Z,U) with φ monotonous in U , U uniform, the condition that Z and U are
independent characterizes φ as the conditional quantile function. This exogeneity condition is usually
not satisfied (as for instance in market models, treatment effect models, selection models...) and the
relation should be characterized by other assumptions.

The instrumental variables approach replaces the independence between Z and U by an independence
condition between U and another set of variables W called the instruments. For example, in the
separable case Y = φ(Z)+U the assumption becomes E[U |W ] = 0 (see for a recent literature Florens
(2003), Newey and Powell (2003), Hall and Horowitz (2005)). In the nonseparable model, it is assumed
that U ⊥⊥ W (see contributions of Horowitz and Lee (2007), Chernozhukov et al. (2007a), or Cher-
nozhukov et al. (2007b)). In these cases the characterization of the relation is not fully determined
by the independence condition but also by a dependence condition between the Z and the W . This
dependence determines the identifiability of the relation: in a nonparametric framework, this impacts
the speed of convergence of the estimators.

The objective of this chapter is to analyze dynamic models with endogenous elements. The goal is
concentrated on the specification of the models in such a way that the functional parameter of interest
appears as the solution of a functional equation (essentially linear or nonlinear integral equation).
Using this equation, identification or local identification conditions may be discussed. This chapter is
not concerned by statistical inference but shows how the functional parameter may be derived from
objects which may be estimable using data. The theory of nonparametric estimation in these cases
belongs to the theory of ill-posed inverse problems (see Darolles et al. (2010a), Carrasco et al. (2003a),
Carrasco (2008)) and will be treated in specific cases in other papers.

We address the question of endogeneity in dynamic models in two ways. First we consider a sepa-
rable case which extends the usual model Y = φ(Z) + U with E[U |W ]. However, this case is not
sufficient to cover the endogeneity question in models such as counting processes or diffusions. In
this case, we analyze the impact of endogenous variables through a change of time depending on
the endogenous variables. This approach covers the example of the duration models, the counting
processes, the diffusion with a volatility depending on the endogenous for example. It will be shown
that those change of time models give an interesting extension of non-separable models in the dy-
namic case. These two approaches will be treated in Section 2.2 and 2.3 of the chapter and will be
illustrated by examples. We first recall in the next paragraph the main mathematical tools we will use.



2.1.2 Mathematical framework

In this chapter we essentially analyze a large class of stochastic processes verifying a decomposition
property. Let (Xt)t≥0 (t may be discrete or continuous) and Ft a filtration of σ-fields such that Xt is
càdlàg (its trajectories are right-continuous and have a left-limit) and that (Ft)t is right-continuous
(that is to say that

⋂
s>t Fs = Ft). In the usual terminology of the general theory of stochastic

processes we will say that Ft satisfies the “conditions habituelles”.

A process Xt is a special semi-martingale w.r.t. (Ft)t if there exists two processes Ht and Mt such
that:

Xt = X0 +Ht +Mt; (2.1)

• Mt is an Ft-martingale;

• Ht is Ft-predictable.

A more general definition only assumes that Mt is a local martingale but for sake of simplicity only
the martingale case is treated in this chapter. We also simplify the expressions by always assuming
X0 = 0. Extension to local martingales and to cases where X0 6= 0 requires more technicalities (in
particular in Section 2.3). Let us note that the decomposition (2.1.2) is a.s. unique. These concepts
are fundamental in the theory of stochastic processes (see in particular Dellacherie and Meyer (1971)
- Vol II - Chap VII). is the underlying expression of the usual Doob-Meyer decomposition.

We may easily illustrate this definition in the case of discrete time models. In that case we have:
M0 = 0, Mt = Mt−1 + (Xt −E[Xt|Ft−1]) and Ht = Ht−1 + [E[Xt|Ft−1]−Xt−1] (see Protter (2003) -
Chap III). Equivalently ∆Xt = Xt −Xt−1 may also be written:

∆Xt = Xt −Xt−1 = (E[Xt|Ft−1]−Xt−1) + (Xt − E[Xt|Ft−1]).

In case of continuous time processes, we also restrict our study to cases where Ht is differentiable and
we have the expression:

dXt = htdt+ dMt

where Ht =
∫ t

0
hsds. Some particular cases will be analyzed in details. The first one is the single dura-

tion model with endogenous cofactors possibly time-dependent. More generally, we analyze counting
processes and an example of Markovian transition model is also discussed. Finally, we also applied
our approach to diffusion models.



2.2 The additively separable case: the Instrumental Variables

decomposition of semi-martingales

2.2.1 The framework

Let us consider a multivariate stochastic process Xt = (Yt, Zt,Wt) (with Yt ∈ R, Zt ∈ Rp, Wt ∈ Rq)
and Xt the filtration generated by Xt i.e. Xt is the σ-field generated by ((Ys, Zs,Ws)s≤t). We consider
different subfiltrations of Xt:

1. Yt, Zt, Wt are the filtrations generated by each subprocess;

2. we call the endogenous filtration the filtration generated by Yt and Zt, and the instrumental
filtration the filtration Yt ∨Wt generated by Yt and Wt.

We first extend the usual decomposition of semi-martingales in the following way.:

Definition 2.2.1. The process Yt has a Doob-Meyer Instrumental Variable (DMIV) decomposition
if:

Yt = Λt + Ut

where:

1. A1 - Λt is Yt ∨ Zt predictable ;

2. A2 - E[Ut − Us|Yt ∨Wt] = 0 for 0 ≤ s < t.

�

Equivalently we may say that Yt is an IV semi-martingale w.r.t. (Yt∨Zt)t and (Yt∨Wt)t. First we can
note that if Wt = Zt this definition reduces to the usual Doob-Meyer decomposition. If the filtration
(Yt ∨ Zt)t is included into (Yt ∨ Wt)t the problem becomes a problem of enlargement of filtrations
and preservation of the martingale property. This question is central in the theory of non-causality
treated e.g. by Florens and Fougère (1996).

We consider then the more general case where (Yt ∨ Zt)t and (Yt ∨Wt)t have no inclusion relation.
Moreover, the two filtrations do not need to be generated by processes and (Yt ∨Zt)t and (Yt ∨Wt)t,
and may be replaced by more general filtrations Ft and Gt under the condition that Yt has to be
adapted to each of them. Assumption A1 means that the predictable process “only depends” on the
past of Yt and on the past of Zt. Assumption A2 is the independence condition between the “noise”
Ut and the instruments Wt. Equality in A2 is a mean independence only (like in the static separable
model Y = φ(Z) + U) and looks like a martingale property. It’s not strictly speaking a martingale
property because Ut is not assumed to be adapted to (Yt ∨ Wt)t. The usual decomposition when
(Yt ∨ Zt)t = (Yt ∨ Wt)t is unique a.s. but in the general case, it should be noted that this unicity
result is not true: this will be precisely the object of the identification condition analyzed below.



2.2.2 Identification

Let us first consider the characterization of the decomposition in term of conditional expectation.

Theorem 2.2.1. Let us assume that Yt is a special semi-martingale w.r.t. Yt ∨Wt and that :

dYt = htdt+ dMt

where Ht =
∫ t

0
hsds is Yt ∨Wt-predictable and Mt is a Yt ∨Wt-martingale.

If the following family of integral equations:

ht = E[λt|Yt ∨Wt] t ≥ 0 (2.2)

with λt Yt ∨ Zt-measurable and integrable

has a sequence of solutions λt, then Yt is an IV semi-martingale and Λt =
∫ t

0
λsds .

�

Roughly speaking, Equation (2.2) means that we have to solve:

htdt = E[dXt|(Ys,Ws)0≤s≤t]

=
[∫

λt((Ys, Zs)0≤s≤t)f((Zs)0≤s≤t|(Ys,Ws)0≤s≤t)d(Zs)0≤s≤t

]
dt.

This expression is not mathematically rigorous because the arguments of the functions are infinite
dimensional but it shows how our definition extends the static separable case.

A DMIV decomposition exists if and only if ht belongs to the range of the “instrumental” conditional
expectation operator. If we restrict our attention to square integrable variables, this operator is defined
on L2(Yt ∨ Wt). Note that the conditional expectation operator is compact under minor regularity
conditions. Its range is then a strict subspace of L2(Yt ∨ Wt) and the existence assumption is an
over-identification condition on the model. The main question concerns the unicity of the solution,
which is equivalently the identifiability problem. Given the distribution of the process Xt, the function
ht, and the conditional expectation operator E[...|Yt∨Wt] defined on L2(Yt∨Zt) are identifiable. The
DMIV decomposition is then unique (or equivalently Λt is identifiable) if and only if the conditional
expectation operator is one-to-one. The following concept extends the (fully known) case of static
models.

Definition 2.2.2. The filtration (Yt ∨Zt)t is strongly identified by the filtration (Yt ∨Wt)t (or Zt is
strongly identified by Wt given Yt) if and only if for t ≥ 0:

∀ψ ∈ L2(Yt ∨ Zt),E[ψ|Ys ∨Ws] = 0 ⇒ ψ = 0 a.s.

�

Corollary 2.2.1. The DMIV is unique if (Yt ∨ Zt) is strongly identified by (Yt ∨Wt).



�

For a good treatment of conditional strong identification and its relation with the completeness concept
in statistics, see Florens et al. (1990) - Chap 5. Then if Zt is strongly identified by Wt given Yt, the
conditional expectation operator is one-to-one and Λt is identified. Several papers give more primary
conditions which link this property to the conditional expectation operator (see a recent contribution
of d’Haultfoeuille (2010)). We want to illustrate this concept in two examples : discrete-time models
and diffusions.

2.2.3 Examples

2.2.3.1 Example 1 : discrete time model

Suppose that we have a discrete time model such as:

yt = λ(ξt) + εt

with E[εt|yt−1, . . . , ξt−1, . . .] = 0. In our framework, we have then:

Yt = y0 + ...+ yt Λt = λ(ξ0) + ...+ λ(ξt) Ut = ε0 + ...εt.

Moreover if we define:

Zt = σ{ξt+1, ξt, . . .} Yt = σ{yt, yt−1, . . .} Wt = σ{ξt, ξt−1, . . .}

then we have the following properties:

• Yt is Yt ∨ Zt-adapted and Yt ∨Wt-adapted;

• Λt is Yt ∨ Zt−1-measurable and Yt ∨ Zt-predictable;

• E[Ut|Wt−1] = Ut−1 as E[εt|Yt ∨Wt−1] = 0 and E[εs|Yt ∨Wt−1] = εs if s ≤ t− 1.

In that case, Yt ∨Wt ⊂ Yt ∨ Zt, λt = λ(ξt), ht = E[λt|ξt−1, ..., yt−1, . . .], i.e. :

ht = E[λ(ξt)|ξt−1, . . . , yt−1, . . . , ...].

If (yt, ξt) is Markovian, then we have moreover:

E[yt|ξt−1, yt−1] = E[λ(ξt)|ξt−1, yt−1].

One can then proceed to nonparametric estimation:

• for weakly dependent stationary processes, we face inverse problems as in the usual i.i.d. case;

• when studying unit root processes, we can use ordinary kernel estimation but there is a second
order bias. Wang and Phillips (2009) treats it with a control function, but this does not address
the case of the second order bias of instrumental variables. This is therefore an argument for
pure IV in non-stationary models.



More generally, we could consider:

yt = λt(zt, zt−1, . . . , yt−1, . . .) + εt

with E[εt|wt, wt−1, . . . , yt−1, . . .] = 0, Zt = σ(zt, zt−1, . . . , yt, . . .) and Wt = σ(wt+1, . . . , yt, . . .). The
decomposition of Yt = y0 + . . .+ yt w.r.t. Wt writes:

Yt =
t∑

j=1

E[yj |Wj−1]︸ ︷︷ ︸
=hj

+
t∑

j=1

(yj − E[yj |Wj−1])

with ht =
∑t

j=1 hj . We must then solve:

ht = E[λt(zt, . . . , yt−1, . . .)|Wt].

2.2.3.2 Example 2 : diffusions

Let us assume that the structural model has the following form :

dYt = λt(Yt, Zt)dt+ σt(Yt)dBt (2.3)

where Bt is a Brownian motion. This means that if Zt is fixed (or randomized, and not generated
by the distribution mechanism), Yt follows a diffusion process with a drift equal to λt and a volatility
equal to σt(Yt). Note that we assume that Zt does not appear in the volatility term. Let us assume
that:

E[dBt|Yt ∨Wt] = 0.

In that case Equation (2.3) characterizes the DMIV decomposition of Yt. In order to identify λt we
need to construct the decomposition of Yt w.r.t. the filtration Yt∨Wt (that we write dYt = htdt+dMt)
and to solve:

ht = E[λt|Yt ∨Wt]. (2.4)

Note that the “reduced form” model dYt = htdt+ dMt has no reason to be a diffusion. Conditionally
on Wt, the process may be non Markovian and Mt maybe different from a Brownian motion. This
general framework may be applied to particular cases, and simplifies the estimation problem. For
example, let’s assume that the structural model has an Ornstein-Uhlenbeck form:

λt(Yt, Zt) = θ(µ(Zt)− Yt) and σt(Yt) = σ2

where θ is a constant. In that case the model becomes a semi-parametric model:

ht = θ(E[µ(Zt)|Yt ∨ Zt]− Yt).

We may project this equation under the σ-field generated by Yt and Wt, only having then to solve:

E[ht|Yt ∨ Zt] = θ(E[µ(Zt)|Yt ∨ Zt]− Yt).

This construction may not be generalized if the volatility depends on Zt because E[σ(Yt, Zt)dBt|Yt ∨
Wt] does not cancel. The change of time models we will present in the next section, will solve this
problem as it will be shown in paragraph 2.3.4.5. An other approach may be however adapted in the



same direction as the DMIV decomposition. We briefly introduce this approach which will be treated
in an other paper.

Let us start with a structural model (z fixed or assigned).

dYt = λ(Yt, z)dt+ σ(Yt, z)dBt

which is assumed to be stationary and Z, the endogenous element is assumed to be not time-
dependent. Following a method2 presented by Aı̈t-Sahalia (2002), let us introduce the transformation
Ỹt = γ(Yt, z) =

∫ Yt

0
du

σ(u,z) . This leads to the equation:

dỸt = µ(Ỹt, z)dt+ dBt

where:

µ(η, z) =
λ(γ−1(η, z), z)
σ(γ−1(η, z), z)

− 1
2
∂σ

∂u
(γ−1(η, z), z)

The model may be completed by two assumptions:

E[dBt|Yt ∨Wt] = 0

E[(dBt)2|Yt ∨Wt] = 1

which are satisfied in particular if dBt is independent of Yt ∨Wt. This two equations may be used to
characterize λ and σ. The main difficulty is coming from the fact that Ỹt depends on the parameters
and this type of model may be viewed as a dynamic extension to transformation models. In fact, such
a change in variables is originally closely related to the transformation established by Doss (1977),
whose principle is also used by Detemple et al. (2005) for representation of Malliavin derivatives. We
also refer to a recent work of Park (2010) that tries to estimate a conditional mean model in continuous
time. This paper, where endogeneity is not tackled, is more focused on estimation, but a time change
is also used to get a unit-volatility Brownian residual term.

2.3 The non-separable case : the time-change models

The DMIV decomposition is not sufficient to cover models like counting processes models, or diffusion
models with volatility dependent on endogenous variables. We need to propose an other concept for
instrumental variables analysis, which we will extend to dynamic models in the non-separable case
(treated in the static case by e.g. Horowitz and Lee (2007)). In order to motivate our presentation,
we start by the basic example of duration models.

2.3.1 Duration models: a motivating example

Let τ a be duration, i.e. a positive random variable. The distribution of τ is characterized by its
survivor function S(t) = P(t ≤ τ) assumed to be differentiable. Let λ(t) denotes the hazard function
i.e. (that is λ = −S′/S) and Λ(t) the integrated hazard function (Λ(t) =

∫ t

0
λ(s)ds = −ln(S(t))).

We assume that Λ is strictly increasing. Such a duration model has a counting process representation

2We thank Nour Meddahi and Eric Renault for very helpful discussions and comments on this topic.



through the process Nt = 1{t ≥ τ}. This process is a sub-martingale and then a semi-martingale that
may be represented w.r.t. the filtration generated by the history of Nt through:

Nt =
∫ t

0

λ(s)1(s < τ)ds+Mt. (2.5)

The intensity ofNt (relatively to its history) is equal to λt1{τ > t} = λt(1−Nt−) (see e.g. Karr (1991)).
A fundamental property we will use in the following is that Λ(τ) has an exponential distribution with
parameter 1. Then, if Ut is the counting process 1{t ≥ Λ(τ)} we have:

Ut =
∫ t

0

1{s < Λ(τ)}ds+MU
t (2.6)

because the hazard function of the exponential is constant equal to 1. Equivalently, these relations
imply that:

NΛ−1(t) = Ut (2.7)

and the given N becomes the process U via a change of time.

We want now to introduce a random endogenous factor Z in the duration model and an instrument
W . For sake of simplicity, both Z and W are not time-dependent in this paragraph. An important
literature analyzes endogenous variables in duration models (see van den Berg (2000)) and is in
particular motivated by treatment models where outcomes are durations (see Abbring and van den
Berg (2003b)). Our approach does not depend on any specific statistical models and extends the
instrumental variable analysis to this problem. It is natural to assume that the integrated hazard
function Λ becomes a function Λ(t, Z) of Z (also noted Λt(Z)); the “noise” of the model, equal to
Λτ (Z), is assumed to be independent of the instruments W , and has an exponential distribution with
parameter 1. The model may be written in the usual way:

τ = Φ(U,Z) = Λ−1(U,Z) (2.8)

where Λ(., Z) is strictly increasing, U ⊥⊥W and the distribution of U is given. This model becomes an
example of non-separable IV model and generates a non-linear integral equation which characterizes
Λ or equivalently Φt(Z) = Λ−1

t (Z). Let us consider the following function :

S(t, z|w) =
∂

∂z
P(τ ≥ t, Z ≤ z|W = w) (2.9)

which may be seen as the joint survivor of τ and density of Z conditionally on W = w, identified by
the joint observation of (τ, Z,W ). Then the independence condition between U and W implies:∫

Z

S(Φt(Z), z|w)dz = P (U ≥ t) = e−t (2.10)

because U is exponential with parameter 1. We will discuss later the identification of Φ i.e. the unicity
of the solution of this equation.



We may wish to apply the DMIV decomposition to the Nt process considering the two filtrationsNt∨Z
and Nt ∨ W, generated by the history of Nt and respectively the endogenous and the instrumental
variable. We then obtain a decomposition Nt = Λ̃t + Ũt where Λ̃t =

∫ t

0
λ̃(s, z)ds and λ̃(s, z) =

λ̃0(s, z)1{τ > t}. In this context, the function λ̃0(s, z) should then become the solution of:

fτ (t|W )
Sτ (t|W )

=
∫
λ̃0(s, z)fτ (z|w, τ ≥ t)dz (2.11)

where the left hand-side is the hazard function of τ given W = w (in that case ht = fτ (t|W )
Sτ (t|W )1{τ > t})

and fτ (z|w, τ ≥ t) is the conditional density of Z given W = w and the event {τ ≥ t}. However the
λ̃0(s, z) function is the derivative of Λ̃t but not the derivative of Λ(t, z) we have introduced above,
and is not in general the hazard rate of the counting process associated to the duration.

The counting process version of the non-separable model (2.8) follows from the previous remarks.
We may consider Nt = 1{τ ≤ t} and assume that there exists a time-change function Φt(Z) strictly
increasing and depending on Z such that NΦt(Z) = Ut where Ut is a counting process associated to an
exponential distribution of parameter 1 and such that Ut is independent of W . We will see later that
these assumptions generates a non-linear integral equation deriving from semi-martingale decomposi-
tions which is equivalent in this particular case to Equation (2.10).

2.3.2 Time-change models

We use the notations introduced at the beginning of Section 2.2. We consider a stochastic process Yt

and two filtrations Ft = Yt ∨ Zt (the “endogenous filtration”) and Gt = Yt ∨Wt (the “instrumental
filtration”) such that Yt is adapted to both. We also introduce Ht = Ft ∨ Gt generated by the three
processes, Yt, Zt and Wt.

Definition 2.3.1. The process Yt has an instrumental variable non-separable representation if there
exists a stochastic process Φt such that:

1. (Φt)t is an increasing sequence of stopping times relatively to the filtration F ;

2. (YΦt
)t (the process Y stopped at time Φt) is equal to a process Ut independent of the Wt process;

3. Ut is a semi-martingale w.r.t. to its own history (Ut = HU
t + MU

t ) with a given compensator
HU

t .

�

Remember that the property that for t ≥ 0, Φt is a stopping time w.r.t. F means that ∀s ≥ 0,
{Φt ≤ s} ∈ Fs. In the introducing example of the duration model of Section 2.3.1, Z is not time-
dependent and this property only means that Φt is measurable w.r.t. Z for any t. The property that
Φt is a F-stopping time formalizes the idea that Φt only depends on Z and on the past of Y but
not on W . However, Assumption (1) of Definition 2.3.1 implies that Φt is also a stopping time for
the filtration Ht. An important literature exists in abstract probability theory about the increasing
sequences of stopping times and about the properties of processes stopped at these stopping times and
the authors usually look at the properties (martingale, local martingale, ...) preserved by the change
of time. Examples of this (not very recent) literature are Kazamaki (1972), El-Karoui and Weidenfeld
(1977), El-Karoui and Meyer (1977), LeJan (1979).



2.3.3 Identification

Our objective is now to characterize the function Φt (depending also on the Zt process) from objects
identified through the joint process (Yt, Zt,Wt). We adopt a strategy based on the decomposition of
the Yt process w.r.t. the larger filtration H.

Theorem 2.3.1. Let us assume that:

1. Yt is a semi-martingale w.r.t. filtration H and that we have:

dYt = ktdt+ dEt

where Kt =
∫ t

0
ksds is an Ht-predictable process and Et is an Ht martingale.

2. Yt has an instrumental variable non-separable representation as defined in Definition 2.3.1 when
Φt is assumed to be continuous and differentiable (possibly except at a discrete set of points).

3. The distribution of (Zt)t, conditionally on σ-fields Ys∨Ws for any s, is dominated by a measure
Q and has a density denoted g(z|Ys ∨Ws).

Then: ∫
Q(dz)

∫ Φt

0

ksg(z|Ys ∨Ws)ds = HU
t (2.12)

�

This equation shows that Φt is the solution of a non-linear integral equation where the right-hand
side term is given and all the left-hand side (k and g) are identified by the distribution of the process
(Yt, Zt,Wt). We assume that the model is well specified or equivalently that a solution exists to the
Equation (2.12). The identification question is concerned with the unicity of the solution. As the
problem is non-linear it is natural to look at local unicity of the solution. Let us assume that Φt is the
true process and we compute the Gateaux-derivative of the left hand-side, taken in Φt, in direction of
a function Φ̃t : T ′Φt

(Φ̃t). We get obviously for any t:

T ′Φt
(Φ̃t) =

∫
Φ̃tkΦt

g(z|YΦt
∨WΦt

)Q(dz).

We note that T ′Φt
(Φ̃t) is linear and we assume that it is equal to the Frechet-derivative. Local unicity

is then obtained through the condition :

T ′Φt
(Φ̃t) = 0 ⇒ Φ̃t = 0 a.s. (2.13)

If Φ′t (the derivative w.r.t. t) does not cancel, this implication is true as soon as:∫
Rsksg(z|Ys ∨Ws)Q(dz) = 0 ⇒ Rs = 0 a.s.

where Rs = Φ̃Φ−1(s).



2.3.4 Examples

2.3.4.1 Duration model with constant covariates

We take here the example of Section 2.3.1 in the case where variables Zt = Z and Wt = W are fixed
and known at time-origin. We have Yt = 1{t ≥ τ}, and we suppose that there exists a sequence
Φt(Z) of stopping-times such that YΦt(Z) = Ut with Ut = 1{t ≥ U} where U follows an exponential of
parameter 1, U ⊥⊥W . In this framework, we want to use Equation (2.12) of Theorem (2.3.1). In this
context, ks is the intensity of Yt w.r.t. to Ht (with Ht equal here to σ(Yt, Z,W ) = σ({τ ≥ t}, Z,W )).
Equivalently, g(z|Ys∨Ws) = g(z|τ ≥ t,W ). As Z is a random variable and not a process,

∫
Q(dz) will

then be an integral over the support of Z relatively to the Lebesgue measure. As U is an exponential
variable, the compensator of Ut = 1{t ≥ U} is trivially equal to HU

t = t ∧ U . If we apply Theorem
2.3.1, we get:

∫
dz

∫ ΦU∧t(z)

0

k(s|τ ≥ s, z,W )g(z|τ ≥ s,W )ds = U ∧ t. (2.14)

As we will work with a fixed, arbitrary t, we can therefore conceptually eliminate U in all calculations
and replace U ∧ t with t. We already had the result of Equation (2.10) and we want to show that
it leads to the same equation than Equation (2.14). Now, we write f(t, Z|W ) the joint law of (τ, Z)
conditional on W . Having τ = Φu(Z), if we note g(U,Z|W ) the joint law of (U,Z) conditional on W ,
we have:

g(U,Z|W ) = Φ′U (Z)× f(ΦU (Z), Z|W ).

Our main assumption was that U = Λ(τ, z) ∼ Exp(1) conditionally on W . Then, this leads to :

e−U =
∫
g(U, z|W )dz =

∫
Φ′U (z)f(ΦU (z), z|W )dz.

Then we have the two following expressions, holding ∀u ≥ 0:{ ∫
Φ′u(z)f(Φu(z), z|W )dz = e−u∫

Sτ (Φu(z), z|W )dz = e−u.

If we divide the first equation by the second, we get:

1 =
∫

Φ′u(z)f(Φu(z), z|W )∫
Sτ (Φu(z′), z′|W )dz′

dz

=
∫

Φ′u(z)
f(Φu(z), z|W )
Sτ (Φu(z), z|W )︸ ︷︷ ︸

I1

× Sτ (Φu(z), z|W )∫
Sτ (Φu(z′), z′|W )dz′︸ ︷︷ ︸

I2

.

I1 is the hazard function of the process {Yt} taken in Φu(z) conditional on Z = z, W . Indeed:

f(t, z|W )
S(t, z|W )

=
f(t|z,W )f(z|W )
S(t|z,W )f(z|W )

=
f(t|z,W )
S(t|z,W )

= k(t|z,W ).

I2 is the law of Z conditional to W and U ≥ u. Finally:∫
Φ′u(z)k(Φu(z)|Z = z,W )g(z|U ≥ u,W )dz = 1.



If we integrate in u for u varying from 0 to t we get:∫ t

0

du

∫
z

Φ′u(z)k(Φu(z)|Z = z,W )g(z|W,U ≥ u)dz = t.

If we commute the integral terms and make the change of variable s = Φu(z), and remark that {U ≥ u}
is equivalent to {ΦU (z) ≥ Φu(z)} = {τ ≥ s}, then we recover Equation (2.14):∫

dz

∫ Φt(z)

0

k(s|τ ≥ s, z,W )g(z|τ ≥ s,W )ds = t.

2.3.4.2 An example of duration model with process covariate

Let Nt = 1(t ≥ τ) the explained process associated to the duration τ and Zt be an endogenous
covariate process assumed to be a jump process: Zt = 1{t ≥ ε}. The process Zt may be a treatment
equal to 0 up to a random time ε and to 1 after. The structural model may be interpreted in the
following way: if Zt is “fixed” or assigned we assume that Nt has a structural hazard function equal
to λt = α + βZt with α, β > 0 and its compensator is Λt =

∫ t

0
λs(Z)ds = αt + β(t − ε)1{t ≥ ε} and

then:

Φt(Z) = Λ−1
t (Z) =

t

α
1{t < αε}+

t+ βε

α+ β
1{t ≥ αε}

which is an increasing sequence of stopping times adapted3 to Zt.

In that case the model is parametric and the structural parameters are α and β. Let us now consider
an instrument constant in time W and we assume that NΦt

= 1{t ≥ u} with u ∼ Exp(1) and U ⊥⊥W .
Now consider ρ the hazard rate of τ given the Zt process and the W variable. We have:

ρ(t) = ρ1(t|ε,W )1{ε ≤ t}+ ρ2(t|ε ≥ t,W )1{ε > t}

where ρ1 and ρ2 are the hazard rates of τ given W and respectively ε or ε ≥ t. Then α and β are
characterized as the solution of: ∫

dε

∫ Φt

0

ρ(s)g(ε|τ ≥ s,W )ds = t (2.15)

where g(ε|τ ≥ s,W ) is the conditional density of ε given τ ≥ s and W . In this equation ρ and g are
identified and α and β follows from the resolution of Equation (2.15).

2.3.4.3 Counting process with endogenous cofactor

Let us assume that Yt is a counting process, i.e. a process valued in N such that Y0 = 0 and with
càdlàg trajectories which are step functions having jumps of size 1 i.e. there exists a sequence of (τj)
such that:

Yt =
∑
j≥1

1{t ≥ τj}.

3Indeed let’s consider for a given t the event E = {Φt(Z) ≤ s}. If s ≥ ε, Zs = σ{ε} and then E ∈ Zs for any s. If

s < ε, Zs = σ{1(ε > s)}. In that case if t < αε, E is always true and if t ≥ αε, E is always false.



If Z is assumed first to be fixed or assigned at a value Z = z the process Yt is modelled by its stochastic
intensity λt(z) or by its compensator Λt(z) =

∫ t

0
λs(z)ds. It is clear that if Λt(z) is invertible and if

we define:
Φt(z) = Λ−1

t (z)

the process YΦt(z) = Ut is an homogenous Poisson process. Indeed we have the decomposition:

Yt = Λt(z) +Mt

and
YΦt(z) = t+MΦt(z).

Therefore the compensator is equal to t, which fully characterizes the Poisson process.

If Z is now randomly generated but not necessarily independent of Ut but if Ut is independent of W ,
we face the situation described in Definition 2.3.1 . We limit ourself in the following to the case where
Z and W are time-independent for sake of simplicity.

We first rewrite in that case the integral equation characterizing Φt(z). Note that the intensity kt

verifies kt =
∑

j≥1 k
(j)
t 1{τj−1 ≤ t < τj} with:

k
(j)
t =

fj(s+ τj−1|W, z, τ1, . . . , τj−1)
Sj(s+ τj−1|W, z, τ1, . . . , τj−1)

where fj and Sj are the density and the survivor function of the (difference in) durations τj − τj−1

conditional to W , Z, and the past of the durations. The equation (2.12) becomes the following
sequence of integral equations:

j∑
l=1

∫
dz

∫ τl−τl−1

0

fl(s+ τl−1|W, z, τ1, . . . , τl−1)
Sl(s+ τl−1|W, z, τ1, . . . , τl−1)

g(z|W, τ1, . . . , τl−1, τl > s+ τl−1)ds +

∫
dz

∫ Φt(z)−τj

0

fj(s+ τj−1|W, z, τ1, . . . , τj)
Sj(s+ τj−1|W, z, τ1, . . . , τj)

g(z|W, τ1, . . . , τj−1, τj > s+ τj)ds = t

(2.16)

One may add that

fl(s+ τl−1|W, z, τ1, . . . , τl−1)
Sl(s+ τl−1|W, z, τ1, . . . , τl−1)

g(z|W, τ1, . . . , τl−1, τl > s+ τl−1) =
fl(s+ τl−1, z|W, τ1, . . . , τl−1)
Sl(s+ τl−1|W, τ1, . . . , τl−1)

.

All the elements inside the integral may be estimated and this sequence of integral equations char-
acterizes Φt(z) by intervals. Let us now analyze in more details the nature of the function Φt(z)
and come back to the structural model where Z is fixed or assigned. In this structural model the
λt(z) function takes the form λt(z) = λ

t−τ
(j)
j−1(z

for t ∈]τj−1; τj ] where λ(j)
t (z) is the hazard rate of

τj − τj−1 conditional on the past (τ1, . . . , τj−1) and given z. Then Λt(z) =
∫ t

0
λs(z)ds which implies

that Λt(z) = Λτj−1(z) +
∫ t−τj−1

0
λ

(j)
s−τj−1

(z)ds if τj−1 < t ≤ τj . From this follows:

if Λτj−1(z) < t ≤ Λτj
(z) , then Φt(z) = τj−1 + (Λ(j)

t−Λτj−1 (z))
−1(z)



where Λ(j)
t (z) is the integral of λ(j)(z).

In practice, Φt(Z) will be selected such that some properties are satisfied in the model when Z is
fixed. For example, Yt may be in that case an accelerated life non homogenous Poisson process i.e.:

Yt = F (ψ(Z)t) +Mt

where ψ(Z) is a function depending on the variables Z and F is a baseline, cumulative function on
R+. In that case we have obviously:

Φt(Z) =
F−1(t)
ψ(Z)

depending on the functional parameters ψ and F . Note however that this assumption does not
imply that Yt given Z and W is a Poisson process.

An other example of structural modelling is given by the Hawkes process. Let us assume that for Z
fixed Yt is an Hawkes process whose intensity is:

λt(z) = µ+
∫ t

0

gz(t, s)dYs

where the parameters are µ and g function of Z, t and s. For example g may take the semi-parametric
form:

gz(t, s) = e−β(Z)(t−s)

where β is an unknown positive function of Z. More generally, Z may be a stochastic process and g

may be equal to gz(t, s) = e−β(Zt)(t−s) or e−β(Zs)(t−s). For simplicity, we concentrate our presentation
to the case where Z is constant w.r.t. the time index. The compensator of Yt for any fixed value of
Z = z is equal to:

Λt(z) = µt+
∫ t

0

du

∫ u

0

gz(u, s)dNs

= µt+
∫ t

0

dNs

∫ t

s

gz(u, s)du

= µt+
Nt∑
j=1

∫ t

τj

gz(u, τj)du1{t ≥ τj}

The inverse function Φt(z) = Λ−1
t (z) has not an explicit form but may be easily numerically computed

if g is given and Theorem 2.3.1 gives the way to estimate Φt(z) and then gz(t, u). As in the Poisson
case let us note that Yt given Z and W is not in general an Hawkes process.



2.3.4.4 Markovian transition models

An other application could concern Markov processes with multiple states. We begin by considering
a Markov process Yt with two states {1, 2}. We write IY the generator of Y and suppose that IY has
the form qt(Z)I where I is the following matrix:

I =
[
−1 1
a −a

]
where a ∈ R∗+. We denote Qt(Z) =

∫ t

0
qs(Z)ds. Z is assumed here to be static, endogenous. We

assume that there exists a change of time Φ(Z) = Λ−1(Z) such that Yt = UΛt(Z) where Ut is a
homogenous Markov process with two states and with a generator I. We make the assumption that
Ut is independent from given instruments W . In the following we will skip the indexation in Z for
simplicity (Z will be assumed to be fixed or assigned). It is possible to show4 that:

Φ(t) = Λ−1(t) = Q−1
(1− e(1+a)t

1 + a

)
.

We verify easily that this function is increasing in t.

We now consider the counting processes N12(t) and N21(t) that jump when respectively the process
Yt jumps from state 1 to 2 conditional on the fact that Yt is in 1, and when Yt jumps from state 2 to
1 conditional on the fact that Yt is in state 2. We remark that in the general case, Yt conditional on
Z, W has no reason to remain Markovian. We note k12

s (respectively k21
s ) the intensity of N12 (resp.

N21
s ) conditional on Z, W , Ht. Applying Theorem 2.3.1 we get:∫

z

∫ Φt(z)

0

k12
s g(z|W,Yt)ds =

∫ t

0

1{Us = 1}ds,

∫
z

∫ Φt(z)

0

k21
s g(z|W,Yt)ds =

∫ t

0

a1{Us = 2}ds.

These equations are not useful because Ut is not observed and this right-hand side cannot be computed.
But dividing the second equation by a, summing both and remarking that for each s, 1{Us = 1} +
1{Us = 2} = 1, then we get: ∫

z

∫ Φt(z)

0

(k12
s +

1
a
k21

s )g(z|W,Yt)ds = t.

2.3.4.5 The diffusion model

Let us first consider a structural model which generates a zero-mean diffusion process for Z (assumed
to be time-independent) fixed:

dYt = σ(Yt, Z)dBt (2.17)

We simplify our presentation by assuming σ independent from t. Let us consider the quadratic
variation of Yt:

Λt(Z) =< Yt >=
∫ t

0

σ2(Ys, Z)ds.

4See Appendix .



We define Φt(Z) the inverse function of Λ(Z) (which is invertible because σ is assumed not null for
any Yt). This function characterizes an increasing sequence of stopping times (the event Φt(Z) ≤ s is
equivalent to t ≤ Λs(Z), and only depends on the past of Y until s). The process:

YΦt(Z) = Ut

is then a Brownian motion (see Protter (2003)). We now consider that Z is randomly generated
and that W is an instrument. The model still assumes Equation (2.17) and that the process U is
independent of the filtration Wt generated by W and the past of W . In order to characterize σ or Φ
we applied Theorem 2.3.1 to the relation:

Y 2
Φt(Z) = U2

t . (2.18)

The compensator of U2
t is equal to t. Let k the stochastic intensity of Y 2

t w.r.t. Zt ∨Wt. We have:∫
dz

∫ Φt(z)

0

ksgs(z|Ws)ds = t.

In this expression k and g are identifiable for the DGP and Φ is obtained by solving this nonlinear,
integral equation.

This approach may be generalized by considering a process Zt instead of a fixed value Z if we assume
σ depending only on the past up to t of Z (e.g. σ(Yt, Zt)) and Wt may be a filtration generated by a
process Wt and Yt. Let us underline that even if the structural model 2.17 is a zero-mean diffusion,
this is in general not the case for the process Yt given the filtration Zt∨Wt and even if k is identifiable,
its estimate may be complex.

An other extension is to consider a structural model with drift; if Z is fixed or assigned we assume
the model:

dYt = mZ(Yt, Z)dt+ σ(Yt, Z)dBt.

We consider the same stopping time as before and the sequence of equations:

YΦt(Z) =
∫ Φt(Z)

0

m(Ys, Z)ds+ Ut.

The parameters of the model are Φt(Z) and m(Ys, Z) and in the case where Z is random we assume
that Ut is a Brownian motion independent of Wt. We then apply twice Theorem 2.3.1: we compute

the stochastic intensities k(1)
s of Yt −

∫ t

0
m(Ys, Z)ds w.r.t. Zt ∨Wt and k

(2)
s of

[
Yt −

∫ t

0
m(Ys, Z)ds

]2
w.r.t. Zt ∨Wt also and we derive from Theorem 2.3.1 that:∫

dz

∫ Φt(z)

0

k(1)
s gs(z|Ws)ds = 0

∫
dz

∫ Φt(z)

0

k(2)
s gs(z|Ws)ds = t.

The functional parameters σ and m are solution of this system of nonlinear equations.



2.4 Operators, identification and estimation

We try here to state the estimation problems arising when trying to solve Equation 2.3.1 with time-
independent covariates in duration models (like Equation 2.10). This framework has also been devel-
oped in Florens (2005).

2.4.1 Operators

2.4.1.1 Definition of the problem

We first assume without loss of generality that Z and W have a compact support and take their values
on [0; 1]dZ and [0; 1]dW . The object of interest is a function:

φ :
{
R+ × [0; 1]dZ → R+

(u, z) 7→ φ(u, z)

that we assume to belong to L2(U,Z) where:

L2(U,Z) =

{
ψ : R+ × [0; 1]dZ 7→ R measurable

∣∣∣ ||ψ||L2(U,Z) =
(∫

|ψ(u, z)|2fU (u)fZ(z)dudz
) 1

2

< +∞

}
.

L2(U,W ) =

{
ψ : R+ × [0; 1]dW 7→ R measurable

∣∣∣ ||ψ||L2(U,W ) =
(∫

|ψ(u,w)|2fU (u)fW (w)dudw
) 1

2

< +∞

}
.

In the following we will work with a fixed U = u; L2(U,Z), L2(U,W ) will be noted L2
Z , L2

W . We
define:

T :
{
L2

Z → L2
W

φ 7→ T (φ)

where T (φ) : (u,w) 7→ (u,w) →
∫

z

∫ φ(u,z)

0
a(s, z, w)dsdz − u with:

a(s, z, w) = λτ (s|Z = z,W )g(z|τ ≥ s, w) = fτ (φ(u, z), z|τ ≥ φ(u, z),W ).

Resolving T (φ) = 0 is a nonlinear inverse problem.

2.4.1.2 Fréchet-derivative of the operator

We would like to check the Fréchet-differentiability of the problem. The Gateau-derivative of the
operator is given by taking α = 0 in:

∂

∂α

[ ∫
z

∫ φ(u,z)+αφ̃(u,z)

s=0

a(s, z, w)− u
]
.

Then the Gateau-derivative in φ is the operator:

φ̃ 7→ T ′φ(φ̃) =
∫

z

φ̃(u, z)a(φ(u, z), z, w)dz.



We will give sufficient assumptions on function a() in order to ensure that the Gateau-derivative is
also the Fréchet-derivative. As we have a(s, z, w) = fτ (φ(u, z), z|τ ≥ φ(u, z),W ), conditions on a()
can be translated on conditions on the joint density fτ (t, z, w) (see Florens (2005)).

Assumption 2.4.1. We assume that:

1. a() satisfies a Hilbert-Schmidt condition ie:∫
u,w

∫
z

supt

∣∣∣a(t, z, w)
fZ(z)

∣∣∣2fU (u)fZ(z)fW (w)dudwdz < +∞.

2. a(t, z, w) is continuous and continuously differentiable with respect to t for all z, w, fixed u, and
that

∫
u,w

supt,z |a′(t, z, w)|dudw < +∞ where a′(t, z, w) denotes the partial derivative of a with
respect to the first argument.

Proposition 2.4.1. Let Assumption 2.4.1 be satisfied. Then the operator T is Fréchet differentiable
at every point φ ∈ L2

Z , and the Fréchet derivative T ′φ is given by:

T ′φ(φ̃) =
∫

z

φ̃(u, z)a(φ(u, z), z, w)dz.

�

Proof: we only need to verify that:

• T ′φ is linear (which is straightforward);

• T ′φ is continuous for every φ;

• the mapping φ 7→ T ′φ is continuous on L2
Z in a ||.||L(L2

Z ,L2
W ) sense (where L(L2

Z , L
2
W ) is the space

of linear functions between L2
Z and L2

W ∗).

With Assumption 2.4.1, for any φ0 if we pose k(u,w, z) = a(φ0(u,z),z,w)
fZ(z) , k(.) is then the kernel of the

Hilbert-Schmidt operator T ′φ since:

T ′φ0
φ̃ =

∫
z

k(u,w, z)φ̃(z)fZ(z)dz

with: ∫
u

∫
w

∫
z

|k(u,w, z)|2fZ(z)fW (w)fU (u)dudwdz.

Under those conditions, T ′φ0
is Hilbert-Schmidt and therefore compact, then continuous for any φ0.

The second part of the assumption helps to obtain the third criterion and the continuity of φ 7→ T ′φ
as for φ0,φ1 ∈ L2

Z

(T ′φ0
− T ′φ1

)(φ̃) =
∫

z

φ̃(u, z) {a(φ0(u, z), z, w)− a(φ1(u, z), z, w)} dz.

�



2.4.1.3 Adjoint operator

We now compute the expression of the adjoint operator of the Fréchet derivative we just obtained.
For functions φ̃ ∈ L2

Z and ψ̃ ∈ L2
W , this is the linear operator T

′∗
φ0

from L2
W to L2

Z such that:

< T ′φ0
(φ̃), ψ̃ >L2

W
=< φ̃, T

′∗
φ0

(ψ̃) >L2
Z
.

Writing explicitly:

< T ′φ0
(φ̃), ψ̃ >L2

W
=

∫
u

∫
w

(T
′∗
φ0

(φ̃)(u, z))(ψ̃(u,w))fU (u)fW (w)dudw

=
∫

u

∫
w

{∫
z

φ̃(u, z)λT (φ0(u, z)|z, w)g(z|τ ≥ φ0(u, z), w)dz
}

×(ψ̃(u,w))fU (u)fW (w)dudw

=
∫

u

∫
z

{∫
w

ψ̃(u,w)λT (φ0(u, z)|z, w)g(z|τ ≥ φ0(u, z), w)fW (w)
}

×(φ̃(u, z))fU (u)dzdudw

=
∫

u

∫
z

{∫
w

ψ̃(u,w)λT (φ0(u, z)|z, w)g(w|τ ≥ φ0(u, z), z)
}

×fZ(z))(φ̃(u, z))fU (u)dzdudw

=
∫

u

∫
z

{∫
w

ψ̃(u,w)λT (φ0(u, z)|z, w)g(w|τ ≥ φ0(u, z), z)dudw
}

×(φ̃(u, z))fZ(z)fU (u)dz

= < φ̃, T
′∗
φ0

(ψ̃) >L2
Z

where T ′φ0
is consequently defined by:

T
′∗
φ0

(ψ̃) =
∫

w

ψ̃(u,w)λT (φ0(u, z)|z, w)g(w|τ ≥ φ0(u, z), z)dw.

2.4.2 Ill-posedness

As underlined by Proposition 10.1 of Engl et al. (1996), the characterization of the ill-posedness
of an operator through conditions on its linearization is sometimes difficult and no general
conditions can be given. We could use this proposition or its local version given in Gagliardini and
Scaillet (2009), and try to work directly on T . Alternatively, one can try to show that T ′ computed
on the true solution is compact, which is ensured by condition 2.4.1. This condition will be sufficient
only in the case of infinite dimension of the range of T ′ (which is easily verified since the arrival space
of T ′φ for φ ∈ L2

Z is L2
W ). An other approach could be to show that the image T ′φ(S) of bounded sets

S is relatively compact (i.e. the closure of T ′φ(S) is also compact)and use for this the characterization
of Alt (2006) used by Gagliardini and Scaillet (2009).



2.4.3 Estimation

Estimation is not the purpose of this work. We give however here some insights on how the objects
of interest (operators, functions) could be estimated. Suppose that a sample (τj , zj , wj) of size N is
available. For instance ĝ(z|τ ≥ t, w) may be estimated with classical kernel density estimation such
as:

ĝ(z|τ ≥ t, w) =
1
hz

N∑
j=1

K(z − zj)K̄(t− τj)K(w − wj)∑N
j′=1 K̄(t− τj′)K(w − wj′)

.

K() is here taken as the standard notation for an appropriated kernel, K̄ its survivor version, and h the
appropriate bandwidth adapted to variable Z. Despite the generic notation, kernels K may depend on
z, w, etc. Concerning the intensity, parametric and nonparametric estimation procedures are described
in Appendix A.3. For instance, a Cox model could be helpful using λ(t|z, w) = λ0(t)exp(β′z + γ′w).

We need to express Tφ0, T ′φ0
φ for given φ0, φ ∈ L2

Z . In the following, as we will work with fixed u, we
will omit u in the expressions of the estimated quantities. To obtain an estimator for φ, this assumes
that for each zj in the sample, a corresponding value φ(j) is available. Such a value is not observed and
is only obtained by the resolution algorithm (and potentially updated). With a given set (zj , φ

(j)),
with φ(j) = φ(u, zj), φ is estimated through:

φ̂(z) =
N∑

j=1

φ(j)K(z − zj)∑N
j=1K(z − zj)

.

With two estimators λ̂ and ĝ of λ and g, we have then:

T̂ (φ̂0) =
∫

z

∫ φ̂0(z)

t=0

λ̂(φ̂0(z)|z, w)ĝ(z|τ ≥ t, w)dz.

T̂ ′
φ̂0
φ̃ =

∫
z

N∑
j=1

φ̃(z)λ̂(φ̂0(z)|z, w)ĝ(z|τ ≥ φ̂0(z), w)dz.

2.5 Regularization

We now turn to the study of the regularization aspects of the problem. In the following, we will note
T̂ = T̂n an estimator of T . Generically, T̂ would be defined through:

T̂ : φ→
∫

z

∫ φ(s,z)

t=0

â(z,W, t) dzdt− s.

In our problem, the operator is nonlinear and we cannot assume that we know quantities such as
singular values or functions. T and even T ′ are not known (as our object of interest appears in the
expression of T ′). This implies the use of a regularization technique: we present the regularization in
Hilbert Scales and the study of Tikhonov regularization as a particular case, and regularization by an
iteration method (Landweber-Fridman).



2.5.1 Regularization in Hilbert scales

2.5.2 Problem definition

We recall that we want to solve in φ the following problem:

min
φ
||T̂ (φ)||2 + αn||φ− φ∗||2s with φ(u, z) ∈ L2

Z (2.19)

where αn is a regularization parameter and φ∗ is an arbitrary function. In particular, we will have to
control the behavior of the parameter αn as n goes to infinity. We will adapt the approach of Engl et al.
(1996) p.245 although we face a different problem. Additional conditions on the Fréchet-derivative of
T will be needed to obtain the speed of convergence of our solution. We first examine the convergence
of the sequence of solutions of problem 2.19 towards the true solution of the initial problem T (φ) = 0.

Assumption 2.5.1. Assume that:

• if φ0 is a solution of the problem T (φ) = 0, then there exists a sequence δn such as

||T̂ (φ0)− T (φ0)|| = ||T̂ (φ0)|| ≤ δn;

• δn, αn, and δ2n/αn tends to 0 as n increases to infinity;

• we assume that T̂ is an estimator such that ||T̂ − T || → 0.

We can show that under Assumption 2.5.1 we have:

Lemma 2.5.1. If (φ̂α
n) is a sequence of solutions of the related minimization problems (2.19), then

there exists a subsequence (φ̂α
n,2) of (φ̂α

n) which converges towards a function φl (in a L2
W sense).

Moreover φl is a solution of the problem T (φ) = 0.

See proof in Appendix 2.7.4.

2.5.3 Unicity

Some conditions may be examined to ensure unicity of φl. If the problem T (φ) = 0 is identified, φ0 is
unique and φ0 = φl. As soon as φl is unique, we have that there is only one limit for any convergent
subsequence of (φ̂α

n), so (φ̂α
n) is itself convergent and tends to φ0. However, even when the initial

problem is not identified, it is possible to restrict our problem to some classes of solutions. Engl et al.
(1996) uses the concept of φ∗-minimal norm solutions. Then φ0 is taken as the function, among the
set of solutions φ of T (φ) = 0, which minimizes the quantity ||φ − φ∗||s. Then, we would have that
φ0 = φl. Indeed:

||φl − φ∗|| ≤ lim sup
n→∞

||φ̂αn
n − φ∗||

≤ ||φ0 − φ∗||
≤ ||φl − φ∗||.



The first inequality comes from the lower-semi continuity of the norm. The second comes from the
definition of (φ̂α

n), and the third from the fact that φ0 is a φ∗-minimal norm solution and that φl is
itself a solution. This ensures unicity as soon as the solution has been restricted to be a φ∗-minimal
norm solution.

2.5.4 Speed of convergence

We suppose that we have a solution to the initial problem and that this solution is identified. We want
to derive the speed of convergence of the solutions (φ̂α

n) to the true solution φ0 under this identification
assumption. We mainly need conditions that are similar to those of Engl et al. (1996), with additional
assumptions concerning the Fréchet derivative of T̂ and T in φ0.

Assumption 2.5.2. We suppose that:

• (i) - the problem T (φ) = 0 is identified with a true solution φ0

• (ii) - T and T̂ are continuous and Fréchet-differentiable with convex domains;

• (iii) - there exists C > 0 such as ||r̂n|| ≤ C||φ̂α
n−φ0||2 where r̂n = T̂ (φ̂n)− T̂ (φ0)− T̂ ′φ0

(φ̂n−φ0);

• (iv) - there exists γn such as ||T̂ ′φ0
− T ′φ0

|| ≤ γn;

• (v) - there exists β ∈ R such as φ0 − φ∗ ∈ H−β where (Hs)s∈R is a Hilbert scale (source
condition);

• (vi) - there exists a such as ||T ′φ0
(φ̂− φ0)||2 ∼ ||φ̂− φ0||2−a;

• (vii) - a ≤ s and s ≤ β ≤ a+ 2s;

• (viii) - γ2(a+s)/a
n /αn → 0 when n→ +∞.

Under Assumptions 2.5.1 and 2.5.2 we have the following lemma:

Lemma 2.5.2.

||φ̂α
n − φ0||2−a + αn||φ̂α

n − φ0||2s ≤ δ2n + αn||φ̂α
n − φ0||2s−β + ||φ̂α

n − φ0||−a(δn + ||φ̂α
n − φ0||2)

+γn||φ̂α
n − φ0||(δn + ||φ̂α

n − φ0||−a + ||φ̂α
n − φ0||2)

See the proof in Appendix 2.7.5.

At this point we obtain the same expression than in the case of nonlinear ill-posed inverse problems,
see Engl et al. (1996)). But with the additional term related to γn and the convergence of the Fréchet-
derivative taken on the true solution. If γn = O(δn) this term is likely to be negligible. However when
it’s not the case, this term has to be taken into account for the study of the speed of convergence of
the solution. In our case, as T is estimated through two integrals, and T ′ only one, γn will probably
be slower than δn and thus cannot be considered as systematically negligible. Yet, we will need in the
following the next assumption:



Assumption 2.5.3. We suppose that:

γ
a+β

a
n δ−1

n → 0

This assumption will help us to derive the speed of convergence of the solution. It appears that γn

must not be too slow compared to δn and that there is a minimal power for γn, equal to (a + β)/a
which is greater than 1, to be at least faster than δn.

Lemma 2.5.3. The best choice for αn is:

αn ∼ δ
2a+2s
a+β

n .

If moreover we make assumption 2.5.3, we get a speed of convergence equal to:

O(δ
β−s
a+β ).

αn is chosen according to the usual case and leads to a speed of convergence that is similar to the
standard situation. However, if Assumption 2.5.3 is not verified, the terms in γn are too slow compared
to the others, and the result does not hold, those terms driving then the speed of convergence of the
sequential solutions towards the true solution.

2.5.5 Tikhonov regularization

We reformulate problem 2.19 with a traditional quadratic penalization. We study the new following
minimization objective:

min
φ
||T̂ (φ)||2 + αn||φ− φ∗||2 for φ(u, z) ∈ L2

Z (2.20)

where αn is the regularization parameter and φ∗ an arbitrary function. The study of the convergence
is not affected by this, since a L2 norm is a particular case of the Hilbert space where s = 0. Then
we make the same assumption than 2.5.1 and the demonstration is not affected by the change of
penalization and result 2.5.1 still holds (see Appendix 2.7.7). However, the result concerning the
speed of convergence is a bit different since we cannot simply replace s by 0 in the demonstration.
However, we can make some similar assumptions to derive the speed of convergence, and replace
Assumption 2.5.2 by:

Assumption 2.5.4. We suppose that:

• (i) - the problem T (φ) = 0 is identified with a true solution φ0;

• (ii) - T and T̂ are continuous and Frechet differentiable with convex domains;

• (iii) - there exists C > 0 such as ||r̂n|| ≤ C||φ̂α
n − φ0||2;

• (iv) - there exists γn such as ||T̂ ′φ0
− T ′φ0

|| ≤ γn;

• (v) - there exists w such as φ0 − φ∗0 = T ′φ0

∗
.w;

• (vi) - γn = o(
√
δn);

• (vii) - 2||w||C < 1.



Under hypothesis 2.5.1 and 2.5.4, we can show that :

Lemma 2.5.4. The best choice for αn is:

αn ∼ δn

and the resulting speed of convergence is :

||φ̂α
n − φ0|| = O(

√
δn)

||T̂ (φ̂)|| = O(δn).

2.5.6 Iterative regularization

Rather than defining sequences of minimization problems, we could also try to regularize our problem
with an iteration method.

Generalities

The principle of an iterative method is to linearize the operator around the current solution, and to
update it (see Kaltenbacher et al. (2008)). The interest is to compute linear versions of the operator
rather than the initial one, and then to reduce computation costs. This is the idea of the Newton-type
methods. If we have a solution φk at the iteration k, we could try to solve the linearized problem:

T ′φk
(φk+1 − φk) = −Tφk. (2.21)

At a given step k, T ′
φ̂k
φ is a function of w. The matrix formulation of the problem stated in 2.21 is

Akφ = vk where:

• φ is the vector of the (φ(j))j∈[1;n];

• vk is the vector of the ((−Tφk)(wj))j∈[1;n];

• Ak = (aij)i,j is the matrix such that:

aij =
∫

z

K(z − zj)∑n
j=1K(z − zj)

λ̂(φ̂(z)|z, wi)ĝ(z|τ ≥ φ̂(z), wi)dz.

However in practice, this linear problem may also be ill-posed and has to be regularized. If the
Tikhonov regularization is applied to solve 2.21, then this is the Levenberg-Marquardt method. With
an additional penalty term to solve 2.21, this is the iteratively regularized Gauss-Newton method.
Finally, the Levenberg-Marquardt method regularizes 2.21 with a regularization parameter αk, mod-
ifying the iteration through:

φk+1 = φk + (αkI + T
′∗
φk
T
′

φk
)−1T

′∗
φk

(−Tφk).

A stopping criterion has to be chosen. The Tikhonov regularization parameter αk has also to be
controlled and depends on the iteration parameter k. When we use the iteratively regularized Gauss-
Newton method, the iteration becomes:

φk+1 = φk + (αkI + T
′∗
φk
T
′

φk
)−1T

′∗
φk

(−Tφk) + αk(φ† − φk)

where φ† is an a-priori chosen function.



Landweber-Fridman regularization

We will study here in details a fourth method, the Landweber-Fridman regularization scheme. First,
let’s recall that the scheme of the Landweber iteration is given by:

φδ
k+1 = φδ

k + (T ′φδ
k
)∗(yδ − Tφδ

k)

We assume first that:

Assumption 2.5.5. Tφ = 0 is solvable in B(0; ρ).

Assumption 2.5.6. T is of the form T = T̃ fU fW

τ where T̃ is an operator from L2(U,Z) to L2(U,W )
and τ is a probability density. For φ ∈ L2(U,Z), T ′φ = T̃ ′φ

fU fW

τ . So is T ′∗φ the dual of T ′φ,
T ′∗φ = T̃ ′∗φ × fU fZ

π where T̃ ′∗φ is also the dual of T̃ ′φ and π a probability density. T ′∗φ is then de-
fined from L2

Π(R+ × RdZ ) to L2
τ (R+ × RdW ). The norms used here are to be understood for the

corresponding probability densities depending of the arrival space.

T̃ ′φ and T̃ ′∗φ must be understood for our problem as being again estimators of respectively:

T ′φ(φ̃) =
∫

Z

φ̃(u, z)λτ (φ(u, z)|z, w)g(z|τ ≥ φ(u, z), w)dudz

T
′∗
φ (ψ̃) =

∫
W

ψ̃(u,w)λτ (φ(u, z)|z, w)g(w|τ ≥ φ(u, z), z)dudw.

Assumption 2.5.7. T is such that:

• (i) - ||T ′φ|| ≤ 1 for φ ∈ B(0; 2ρ) ⊂ D(T );

• (ii) - ||Tφ− T φ̃− T ′φ(φ− φ̃)|| ≤ η||Tφ− T φ̃|| with η < 1
2 and φ, φ̃ ∈ B(0; 2ρ) ⊂ D(T );

• (iii) - ||T || < +∞ henceforth T continuous.

Assumption 2.5.8. We have estimators T̂n of T , T̂ ()′n of T ()′ and T̂ ′()∗n of T ′()∗ such that:

• (i) - ||T̂n − T || ≤ δn;

• (ii) - ||T̂ ′∗n,φ − T ′∗φ || ≤ γn for φ ∈ B(0; 2ρ);

• (iii) - ||T̂nφ− T̂nφ̃− T̂ ′n,φ(φ− φ̃)|| ≤ η||T̂nφ− T̂nφ̃|| with η < 1
2 and φ, φ̃ ∈ B(0; 2ρ) ⊂ D(T̂n).

where δn and γn converges towards 0 and are assumed to be monotonously decreasing without loss of
generality.

Assumption 2.5.9. Discrepancy Principle : k∗ = k∗(δn, T̂n) is chosen such that the iteration is
stopped for the first k∗ such that:

|| − T̂nφ̂k∗ || ≤ τδn < || − T̂nφ̂k||

for 0 ≤ k ≤ k∗ and τ > 1 fixed, such as τ > 2 1+η
1−2η > 2.

Theorem 2.5.1. Under Assumptions 2.5.5, 2.5.6, 2.5.7, 2.5.8, and with the stopping criterion pro-
posed in 2.5.9, the nonlinear Landweber iteration with an unknown, estimated operator, converges to
a solution of Tf = 0.

A proof of Theorem 2.5.1 is given in Section 2.7.8



2.6 Conclusion

We have presented two classes of models for stochastic processes with endogenous variables treated
with the instrumental variables method. Dynamic extension of separable models gives a generalization
of the standard Doob-Meyer decomposition of semi-martingales and some probabilistic aspects of this
model should be developed (extension for example to the case when martingales are only local). In
the two kinds of approaches the functional parameters of interest are characterized as solutions of
integral equations and their identification (unicity of the solution) is discussed. We have illustrated
these concepts to many kinds if stochastic processes used in many fields of applied econometrics. All
these examples need to be developed in connection with the infinitesimal generator.

This chapter only treats modelling and not the practical aspects and the theoretical properties of
the inference. In practice, many objects we have introduced depend on infinite past and cannot
be estimated under this form. We have introduced models where the specification is made on the
structural form and reduced forms are implicitly left unconstrained for the estimation. Tractable
approximations for the reduced form should be selected in order to implement the presented methods.
In the considered cases, the parameters are solutions of ill-posed inverse problems and their statistical
properties have to be analyzed.

2.7 Proofs

2.7.1 Proof of Theorem 2.2.1

Let us define Ut by Yt −
∫ t

0
λsds. As Λt =

∫ t

0
λsds is predictable by construction, we just have to

proove that Us satisfies condition A2 of Definition 2.2.1. We have:

E[Ut − Us|Ys ∨Ws] = E[Yt − Ys −
∫ t

s

λudu|Ys ∨Ws]

= E[
∫ t

s

hudu−
∫ t

s

λudu|Ys ∨Ws]

because E[Mt −Ms|Ys ∨Ws] = 0. We can commute the integration and the conditional expectation
terms, and we get:∫ t

s

E[hu − λu|Ys ∨Ws]du =
∫ t

s

E[hu − E(λu|Yu ∨Wu)|Ys ∨Ws]du

because Ys ∨Ws ⊂ Yu ∨Wu for each s ≤ u. The second assumption allows then to conclude and to
obtain the desired result E[Ut − Us|Ys ∨Ws] = 0 and Yt has a DMIV decomposition.

�

2.7.2 Proof of Theorem 2.3.1

Let us start with the decomposition of Yt w.r.t. Ht:

Yt = Kt + Et. (2.22)



We consider (HΦt)t the filtration where for any t, HΦt is the stopping-time sub σ-field ofH∞ associated
to Φt, i.e. :

HΦt
= σ{A ∈ H∞|{Φt < s} ∩A ∈ Hs}. (2.23)

Note that (HΦt
)t is a filtration because Φt is increasing. Equivalently (see Protter (2003) - Chap. I -

Theorem 6):

HΦt
= σ{YΦt

,ZΦt
,WΦt

}. (2.24)

Then:
YΦt

= KΦt
+ EΦt

is the semi-martingale decomposition of (YΦt
)t w.r.t. the filtration (HΦt

)t. This result follows from
Proposition 1 of Kazamaki (1972) which implies that EΦt

remains a martingale w.r.t. (HΦt
)t and

KΦt is predictable under our assumption Kt =
∫ t

0
ksds. The continuity condition of Φt is obviously

satisfied under our assumptions. Under the model specification YΦt = Ut and :

HΦt = Ut ∨ ZΦt ∨WΦt (2.25)

where Ut is the σ-field generated by (Us)0≤s≤t. Then the decomposition (2.24) rewrites :

Ut = KΦt + EΦt (2.26)

and is also the semi-martingale decomposition of Ut w.r.t. (Ut ∨ ZΦt
∨WΦt

). Equivalently Equation
(2.26) becomes:

Ut =
∫ t

0

Φ′skΦsds+ EΦt (2.27)

where Φ′t is the derivative w.r.t. t of Φt.

If Φt is not differentiable at some point, we partition the integral before and after the point. For
simplicity we assume here Φ to be differentiable.

The next step is to derive from Equation (2.27) the decomposition of Ut w.r.t. the sub-filtration
(Ut ∨WΦt)t. We have (see Karr (1991)):

Ut =
∫ t

0

E[Φ′skΦs
|Us ∨WΦs

]ds+ Ẽt

where Ẽt is a martingale adapted to (Ut ∨ WΦt)t. The computation of the conditional expectation
inside the integral may be conventionally written as an integral w.r.t. a conditional density of Zt

process given Us ∨WΦs
, noted g(z|Us ∨WΦs

):

Ut =
∫ t

0

ds

∫
Φ′skΦsg(z|Us ∨WΦs)dz + Ẽt

We commute the integrals and, after a change of variable v = Φs, we get:

Ut =
∫ t

0

Q(dz)
∫ Φt

0

kvg(z|Yv ∨Wv)dv + Ẽt.



Finally let us consider the decomposition of Ut w.r.t. its own filtration:

Ut = HU
t + EU

t .

As (Ut)t and (Wt)t are independent, (Ut) and (WΦt), are also independent and this last decomposition
is also the decomposition w.r.t. (Ut ∨WΦt

). By unicity of the decomposition we get:∫
dz

∫ Φt

0

kvg(z|Yv ∨Wv)dv = HU
t .

�

2.7.3 Expression of Φt for Markov models with two states

By definition, we have that P[Ut+s|Ut] = eIs. We remark that I has for eigenvalues 0 and −(1+a) and
U writes U = DLD−1 with D the matrix of eigenvectors which are respectively (1; 1)′ and (−1; 1)′.
It follows that for t, s ≥ 0:

P[Yt+s|Yt] = P[UΛ(t+s)|UΛ(t)] = eI(Λ(t+s)−Λ(s)).

Matrix eI(Λ(t+s)−Λ(s)) rewrites:

D

[
1 0
0 e−(1+a)(Λ(t+s)−Λ(s))

]
D−1.

The generator IY of Y is then given by the derivative in s, taken in s = 0 of the former expression.
That is:

IY =
[

0 0
0 −(1 + a)Λ′(t)e−(1+a)Λ(t)

]
D−1 = Λ′(t)e−(1+a)Λ(t)DLD−1 = Λ′(t)e−(1+a)Λ(t)I.

Consequently, the generator matrix IY is of the form q(t)I with q(t) = Λ′(t)e−(1+a)Λ(t). Then we have
that

Q(t) =
1

1 + a

(
1− e−(1+a)Λ(t)

)
.

The expression of Φ follows.

�

2.7.4 Proof of Lemma 2.5.1

We note φ̂α
n the sequence of solutions of problems 2.19 (with φ∗ an arbitrary function) and φ0 a true

solution of the initial problem. We want now to show that under Assumption 2.5.1, there exists a
subsequence of solutions which converges to a function which is solution of T (φ) = 0. For each n and
by definition of φ̂α

n we have :

||T̂n(φ̂α
n)||2 + αn||φ̂n

α
− φ∗||2s ≤ ||T̂n(φ0)||2 + αn||φ0 − φ∗||2s

≤ δ2n︸︷︷︸
→0

+ αn︸︷︷︸
→0

||φ0 − φ∗||︸ ︷︷ ︸
fixed

→ 0.



It’s easy to see that:

||φ̂α
n − φ∗||2s ≤

δ2n
αn︸︷︷︸
→0

+||φ0 − φ∗||2s.

Consequently, the sequence (φ̂αn
) is bounded. We can therefore extract a convergent subsequence,

that we will note φ̂αn,2. We note φl the limit of this subsequence. We have to show that φl is itself a
solution of T (φ) = 0. First let’s remark that T̂n(φ̂αn,2) tends to 0 since:

||T̂n(φ̂αn,2)||2 ≤ ||T̂n(φ0)||2︸ ︷︷ ︸
→0

+αn||φ0 − φ∗||2s︸ ︷︷ ︸
→0

.

Then we decompose:

T (φl) = T (φl) + T̂ (φl)− T̂ (φl) + T̂ (φ̂αn,2)− T̂ (φ̂αn,2)

and consequently:

||T (φl)|| ≤ ||T̂ (φ̂αn,2)||︸ ︷︷ ︸
→0

+
√
||T̂ (φl)− T̂ (φ̂αn,2)||︸ ︷︷ ︸
≤||T̂ || ||φl−φ̂αn,2||s

+≤ ||(T̂ − T )(φl)||︸ ︷︷ ︸√
||T̂−T || ||φl||s

with the right hand side tending to 0. Indeed, ||φl||s is fixed, ||φl − φ̂αn,2||s → 0, and with additional
assumption that ||T̂ − T || → 0, ||T̂ || = O(1) will also follow. We conclude from this that (φ̂αn,2)
(which is a subsequence of (φ̂αn)) tends to φl, which is solution of the initial problem.

�

2.7.5 Proof of Lemma 2.5.2

In the following, for sake of simplicity, we will skip indexation by n, using φ̂, α, T̂ , and δ instead of
φ̂α

n, αn, T̂n, and δn. Those objects however still depend on the size of the sample. The problem is to
minimize :

||T̂ (φ)||2 + α||φ− φ∗||2s.

By definition of the solution φ̂, we have in particular:

||T̂ (φ̂)||2 + α||φ̂− φ∗||2s ≤ ||T̂ (φ0)||2 + α||φ0 − φ∗||2s.

Having:
||φ̂− φ∗||2s = ||φ̂− φ0||2s + ||φ0 − φ∗||2s + 2 < φ̂− φ0, φ0 − φ∗ >s

we get:
||T̂ (φ̂)||2 + α||φ̂− φ0||2s ≤ ||T̂ (φ0)||2 + 2α < φ̂− φ0, φ0 − φ∗ >s .

Equivalently, we assume without loss of generality that φ∗ = 0. We write the decomposition of T̂ in
φ0 with the Fréchet-derivative:

T̂ (φ̂) = T̂ (φ0) + T̂ ′φ0
(φ̂− φ0) + r̂.

Then:
||T̂ (φ̂)||2 = ||T̂ (φ0) + r̂||2 + ||T̂ ′φ0

(φ̂− φ0)||2 + 2 < T̂ (φ0) + r̂, T̂ ′φ0
(φ̂− φ0) >



and as ||T̂ (φ0)||2 ≤ δ2 we finally obtain:

||T̂ ′φ0
(φ̂− φ0)||2 + α||φ̂− φ0||2s ≤ δ2 + α < φ̂− φ0, φ0 >s −2 < T̂ (φ0) + r̂, T̂ ′φ0

(φ̂− φ0) >

−2 < (T̂ ′φ0
− T ′φ0

)(φ̂− φ0), T ′φ0
(φ̂− φ0) >

−||T̂ (φ0) + r̂||2 − ||(T̂ ′φ0
− T ′φ0

)(φ̂− φ0)||2.

The two last terms of the right hand side equation are negative, we also have:

||T̂ ′φ0
(φ̂− φ0)||2 + α||φ̂− φ0||2s ≤ δ2 + α < φ̂− φ0, φ0 >s −2 < T̂ (φ0) + r̂, T̂ ′φ0

(φ̂− φ0) >

−2 < (T̂ ′φ0
− T ′φ0

)(φ̂− φ0), T ′φ0
(φ̂− φ0) > . (2.28)

Using Assumption 2.5.2-(vi), we have that ||T ′φ0
(φ̂−φ0)||2 ∼ ||φ̂−φ0||2−a. Moreover the source condition

(Assumption 2.5.2-(v)) implies that there exists w such as φ0 = L−βw. We can also transform
< φ̂−φ0, φ0 >s as <,>s is a scalar product in a Hilbert scale: there exists an operator L (self-adjoint,
unbounded, strictly positive, densely defined) such that:

< φ̂− φ0, φ0 >s = < Ls(φ̂− φ0), Lsφ0 >

= < L2s(φ̂− φ0), φ0 >

= < L2s(φ̂− φ0), L−βw >

= < L2s−β(φ̂− φ0), w >

= O(||φ̂− φ0||2s−β)

as Ls and L−β are self-adjoint, the last equality coming from the Cauchy-Schwartz inequality. We
still have to transform the two scalar products in the right-hand side equation. First if we write:

T̂ ′φ0
= T ′φ0

+ (T̂ ′φ0
− T ′φ0

)

we simply get by Cauchy-Schwartz inequality:

< T̂ (φ0) + r̂, T ′φ0
(φ̂− φ0) >= O(||T̂ (φ0) + r̂||︸ ︷︷ ︸

O(δ+||r̂||)

||T ′φ0
(φ̂− φ0)||︸ ︷︷ ︸

=O(||(φ̂−φ0)||−a)

).

Using Assumption 2.5.2-(iii) we have consequently:

< T̂ (φ0) + r̂, T ′φ0
(φ̂− φ0) >= O

(
(δ + ||φ̂− φ0||2)||φ̂− φ0||−a

)
which implies:

< T̂ (φ0) + r̂, (T ′φ0
− T ′φ0

)(φ̂− φ0) >= O
(
(δ + ||φ̂− φ0||2) (||T ′φ0

− T ′φ0
|| ||φ̂− φ0||)︸ ︷︷ ︸

=O(γ||φ̂−φ0||)

)
.

Then:

< T̂ (φ0) + r̂, (T ′φ0
− T ′φ0

)(φ̂− φ0) >= O
(
(δ + ||φ̂− φ0||2)(||φ̂− φ0)||−a + γ||φ̂− φ0||)

)
.

Moreover it’s easy to obtain:

< (T̂ ′φ0
− T ′φ0

)(φ̂− φ0), T ′φ0
(φ̂− φ0) >= O(γ||φ̂− φ0|| ||φ̂− φ||−a)



by applying the Cauchy-Schwartz inequality and Assumptions 2.5.2-(iv) and (vi). Equation 2.28
becomes finally:

||φ̂α
n − φ0||2−a + αn||φ̂α

n − φ0||2s ≤ δ2n + αn||φ̂α
n − φ0||22s−β + ||φ̂α

n − φ0||−a(δn + ||φ̂α
n − φ0||2)

+γn||φ̂α
n − φ0||(δn + ||φ̂α

n − φ0||−a + ||φ̂α
n − φ0||2)

�

2.7.6 Proof of Lemma 2.5.3

We will see two useful results. First, the interpolation inequality in Hilbert scales which expresses
that for x in Hs and −∞ < q < r < s <∞ we have:

||x||r ≤ ||x||
s−r
s−q
q ||x||

r−q
s−q
s . (2.29)

Second, Engl et al. (1996) recalls that for any c, d, e ≥ 0 and p, q ≥ 0 we have that:

cp ≤ e+ dcq ⇒ cp = O(e+ d
p

p−q ). (2.30)

We now want to express the inequality in Lemma 2.5.2 only with norms of Hilbert scales ||.||−a and
||.||s. Consequently, applying inequality 2.29 with r = 0, q = −a and s = s, we have:

||φ̂− φ0|| ≤ ||φ̂− φ0||
s

s+a

−a ||φ̂− φ0||
a

s+a
s .

Then:
||φ̂− φ0||−a||φ̂− φ0||2 ≤ ||φ̂− φ0||

a+3s
s+a

−a ||φ̂− φ0||
2a

s+a
s

||φ̂− φ0||−a||φ̂− φ0|| ≤ ||φ̂− φ0||
a+2s
s+a

−a ||φ̂− φ0||
a

s+a
s

|||φ̂− φ0||3 ≤ ||φ̂− φ0||
3s

s+a

−a ||φ̂− φ0||
3a

s+a
s .

If we suppose that a ≤ s then it means that ||φ̂ − φ0||−a||φ̂ − φ0||2 = o(||φ̂ − φ0||−a)||2 and that
||φ̂ − φ0||3 = o(||φ̂ − φ0||−a||φ̂ − φ0||). Additionally if we apply 2.29 with q = −a and r = 2s − β we
get:

||φ̂− φ0||2s−β ≤ ||φ̂− φ0||
β−s
a+s

−a ||φ̂− φ0||
2s−β+a

a+s
s .

Finally:

||φ̂α
n − φ0||2−a + αn||φ̂α

n − φ0||2s ≤ δ2 + δ||φ̂− φ0||−a + α(||φ̂− φ0||
β−s
a+s

−a ||φ̂− φ0||
a+2s−β

a+s
s )

+γ(δ||φ̂− φ0||
s

s+a

−a ||φ̂− φ0||
a

s+a
s + ||φ̂− φ0||

a+2s
s+a

−a ||φ̂− φ0||
a

s+a
s )

(2.31)

Applying Property 2.30 four times to the terms of the right hand side of equation 2.31 we get:

||φ̂α
n −φ0||2−a = O

(
δ2 +α

2(a+s)
2a+3s−β ||φ̂α

n −φ0||
2(a+2s−β)
2a+3s−β

s +(γδ)
2(a+s)
2a+s ||φ̂α

n −φ0||
2a

2a+s
s + γ

2(a+s)
a ||φ̂α

n −φ0||2s)
)
.



Using that for any u, v ≥ 0:
√
u+ v ≤

√
u+

√
v this can be rewritten:

||φ̂α
n−φ0||−a = O

(
δ+α

a+s
2a+3s−β ||φ̂α

n−φ0||
a+2s−β
2a+3s−β
s +(γδ)

a+s
2a+s ||φ̂α

n−φ0||
a

2a+s
s +γ

a+s
a ||φ̂α

n−φ0||s
)
. (2.32)

Then we wish to replace the order obtained in 2.32 for ||φ̂α
n−φ0||−a in the right hand side of Equation

2.31. We use that for any ξ, x = O(u + v) implies that xξ = O(uξ + vξ). If we use Assumption
2.5.2-(viii) we get that:

||φ̂α
n − φ0||2−a + α||φ̂α

n − φ0||2s = O
(
δ2 + δα

a+s
2a+3s−β ||φ̂α

n − φ0||
a+2s−β
2a+3s−β
s

+α[δ
β−s
a+s ||φ̂α

n − φ0||
a+2s−β

a+s
s + α

β−s
2a+3s−β ||φ̂α

n − φ0||
2(β−2s−a)
β−2a−3s

s ]

+
{
γ

a+s
2a+s δ

3a+2s
2a+s ||φ̂α

n − φ0||
a

2a+s
s + α(γδ)

β−s
2a+s ||φ̂α

n − φ0||
2s+2a−β

2a+s
s

+(γ
a+s

a δ + αγ
β−s

a )||φ̂α
n − φ0||s + γδ

a+2s
a+s ||φ̂α

n − φ0||
a

a+s
s

γδα
s

2a+3s−β ||φ̂α
n − φ0||

2a+2s−β
2a+3s−β
s + (γδ)

2a+2s
2a+s ||φ̂α

n − φ0||
2a

2a+s
s

γα
a+2s

2a+3s−β ||φ̂α
n − φ0||

4s+3a−2β
2a+3s−β

s + γ
3a+3s
2a+s α

a+2s
2a+s ||φ̂α

n − φ0||
3a

2a+s
s

})
and finally that:

||φ̂α
n − φ0||2s = O

(
δ2α−1 + δα

β−a−2s
2a+3s−β ||φ̂α

n − φ0||
a+2s−β
2a+3s−β
s

+[δ
β−s
a+s ||φ̂α

n − φ0||
a+2s−β

a+s
s + α

β−s
2a+3s−β ||φ̂α

n − φ0||
2(β−2s−a)
β−2a−3s

s ]

+
{
γ

a+s
2a+s δ

3a+2s
2a+s α−1||φ̂α

n − φ0||
a

2a+s
s + (γδ)

β−s
2a+s ||φ̂α

n − φ0||
2s+2a−β

2a+s
s

+(γ
a+s

a δα−1 + γ
β−s

a )||φ̂α
n − φ0||s + α−1γδ

a+2s
a+s ||φ̂α

n − φ0||
a

a+s
s

γδα
β−2a−2s
2a+3s−β ||φ̂α

n − φ0||
2a+2s−β
2a+3s−β
s + α−1(γδ)

2a+2s
2a+s ||φ̂α

n − φ0||
2a

2a+s
s

γα
β−a−s

2a+3s−β ||φ̂α
n − φ0||

4s+3a−2β
2a+3s−β

s + γ
3a+3s
2a+s α

s−a
2a+s ||φ̂α

n − φ0||
3a

2a+s
s

})
.

(2.33)

The first part of the right hand side of Equation 2.33 is identical to the case of standard nonlinear
inverse problem, however a rather complicated term depending on γ appears after that. When we
don’t know anything about γ = γn it’s difficult to simplify the former expression. However, we can
apply the property 2.30 to each term in this expression. The first part will be left unchanged and is
similar to the case of standard nonlinear inverse problems. In the second part, delimited by {. . .}, when
applying this property, the powers a

a+s , a
2a+s , 2a

2a+s of ||φ̂α
n−φ0||s leads to terms that are o(δ2/α) using

Assumption 2.5.2-(viii). The term in ||φ̂α
n − φ0||s leads to a term that is only a O(γ

2(β−s)
a ). Finally,

we obtain (after having taken the root of every expression):



||φ̂α
n − φ0||s = O(δα−

1
2 + δ

2a+3s−u
3a+4s−uα

u−a−2s
3a+4s−u + δ

u−s
a+u + α

u−s
2a+2s

+(γδ)
(β−s)
2a+β + γ

(β−s)
a

+(γδ)
(2a+3s−β)
2a+4s−β α

(β−2a−2s)
2a+4s−β

+γ
(2a+3s−β)

a+2s α
(β−a−s)

a+2s + γ
3(a+s)
a+2s α

(s−a)
a+2s ).

(2.34)

The choice of α must be made by examining the first part of the expression. Then, the good choice
for α is:

α ∼ δ
2a+2s
a+β .

If we replace this quantity in the first line of Equation 2.34, this gives a speed of convergence of order:

O(δ
β−s
a+β ).

We now want to derive conditions under which the remaining terms in γ, with α equal to this value,
are negligible compared to this speed of convergence. Concerning the second term we see that for this,
γ

β−s
a must be a o(δ

β−s
a+β ). As β ≥ s, this is ensured by the condition:

γ
a+β

a δ−1 → 0. (2.35)

The first term implies that we must have: (γδ)
β−s
2a+β = o(δ

β−s
a+β ). As we have:

γδ
β−s
2a+β

δ
β−s
a+β

= (γδ
−a

a+β )
β−s
2a+β

condition 2.35 is still sufficient as β − s and 2a+ β are positive.

The expression of the third term is the following:

γ
2a+3s−β
2a+4s−β δ

5as+4s2−5βs+2a2−3qβ+β2

(a+β)(β−4s−2a) .

To assess that it’s a o(δ
β−s
a+β ), we estimate:

γ
2a+3s−β
2a+4s−β δ

5as+4s2−5βs+2a2−3qβ+β2

(a+β)(β−4s−2a)

δ
β−s
a+β

= (γδ−
a

a+β )
2a+3s−β
2a+4s−β

that ensures the desired convergence since 2a+ 3s− β > 0, s > 0.

Studying the fourth term, we must have γ
3s−β+2a

a+2s δ
−2(s+a)(−β+a+s)

(a+β)(a+2s) = o(δ
β−s
a+β ). That is to say:

γ
3s−β+2a

a+2s δ
−2(s+a)(−β+a+s)

(a+β)(a+2s)

δ
β−s
a+β

= (γδ
−a

a+β )
2a+3s−β

a+2s

which converges to 0 with the same condition and the fact that again 2a + 3s − β and a + 2s are
assumed to be positive.

For the last term, we seek again if γ
3(a+s)
a+2s δ

2(a+s)(s−a)
(a+β)(a+2s) = o(δ

β−s
a+β ). Consequently we remark that:



γ
3(a+s)
a+2s δ

2(a+s)(s−a)
(a+β)(a+2s)

δ
β−s
a+β

= (γ
a+β

a δ
2(a+s)(s−a)−(β−s)(a+2s)

3a(a+s) )
a(a+2s)

3(a+β)(a+s)

It appears that [2(a+s)(s−a)−(β−s)(a+2s)]
3a(a+s) ≥ −1 since 2s+ a is supposed greater than β. Then the con-

dition γ
a+β

a δ−1 → 0 is stronger and this is verified. Finally, we get the desired speed of convergence
and the result of the lemma is verified.

�

2.7.7 Proof of Lemma 2.5.4

We study the minimization problem stated by Equation 2.20. All the norms and the scalar products
will be relative to L2-spaces. We will note φ̂, α and δ instead of φ̂α

n, αn and δn and take φ∗ = 0 for
sake of simplicity. As in the demonstration of Lemma 2.5.3 it is possible to show that:

||T̂ (φ̂)||2 + αn||φ̂− φ0||2 ≤ δ2 + 2α < φ̂− φ0, φ0 > .

We try to re-express the scalar product in the former expression using the fact that φ0 = T ′φ0

∗
.w and

that T̂ (φ̂) = T̂ (φ0) + T̂ ′φ0
(φ̂− φ0) + r̂, we have clearly that:

< φ̂− φ0, φ0 > = < w, T ′φ0
(φ̂− φ0) >

= < w, T̂ ′φ0
(φ̂− φ0) > + < w, (T ′φ0

− T̂ ′φ0
)(φ̂− φ0) >

= < w, (T ′φ0
− T̂ ′φ0

)(φ̂− φ0) > + < w, T̂ (φ̂) > − < w, T̂ (φ0) + r̂ > .

We have using the Cauchy-Schwartz inequality the three following inequalities:

• < w, (T ′φ0
− T̂ ′φ0

)(φ̂− φ0) > ≤ ||w|| ||(T ′φ0
− T̂ ′φ0

)(φ̂− φ0)|| ≤ γn ||w|| ||φ̂− φ0||

• < w, T̂ (φ̂) > ≤ ||w|| ||T̂ (φ̂)||

• − < w, T̂ (φ0) + r̂ > ≤ ||w|| ||T̂ (φ0) + r̂|| ≤ ||w||(δ + ||r̂||) ≤ ||w||(δ + C||φ̂− φ0||2).

Consequently, we have that:

||T̂ (φ̂)||2 + αn||φ̂− φ0||2 ≤ δ2 + 2α||w||(δ + C||φ̂− φ0||2 + ||T̂ (φ̂)||+ γn||φ̂− φ0||).

This rewrites easily:

(||T̂ (φ̂)|| − α||w||)2 + α(1− 2||w||C) ||φ̂− φ0||2 − 2α ||w|| γn||φ̂− φ0|| ≤ (δ + α||w||)2.

We can moreover express :

α(1−2||w||C)||φ̂−φ0||2−2α||w||γn||φ̂−φ0|| =
(√

α(1− 2||w||C)||φ̂−φ0||−
√
α||w||γn√

1− 2||w||C

)2

− α||w||2γ2
n

1− 2||w||C
.

This gives :

(||T̂ (φ̂)|| − α||w||)2 ≤ (δ + α||w||)2 +
α||w||2γ2

n

1− 2||w||C
.



As a2 ≤ b2 + c2 implies that a ≤ b+ c when a, b, c are positive, we conclude that:

||T̂ (φ̂)|| ≤ δ + 2α||w||+ ||w||γn

√
α

1− 2||w||C
.

Replacing in the former expression it’s easy to obtain that:

||φ̂− φ0|| ≤
δ + α||w||√
α(1− 2||w||C)

+ 2
γ||w||

1− 2||w||C
.

As in Engl et al. (1996) the first term drives the choice of the α parameter: αn ∼ δn implying that
||φ̂α

n − φ0|| = O(
√
δn). The second term remains of the same order as soon as γn = o(

√
δn) or

equivalently that γ2
nδ
−1 tends to 0. Finally, we can conclude that T̂ (φ̂) = O(δn).

�

2.7.8 Proof of Theorem 2.5.1

First, we can apply theorem 2.4 of Kaltenbacher et al. (2008) with y = 0 and we have that the non-
linear Landweber iteration applied with the true operator converges to a solution of Tφ = 0. We
could hope to use theorem 2.6 of Kaltenbacher et al. (2008) but our framework is different. For each
estimated operator T̂n the iteration is modified.

In the following, φ0 will be the initial guess. For sake of simplicity we note T̂n = T̂ , T̂ ′n = T̂ ′, φ̂δ
k = φ̂k.

φ̂k and φk are respectively the k-th iterate of the Landweber iteration for the problem with unknown
and exact operator. φ∗ will be the limit of the Landweber iteration with exact operator (i.e. exact
solution).

B Step A - Let kn = k∗(δn, T̂n) the stopping index determined with the discrepancy principle applied
to the nonlinear Landweber iteration with unknown operator. We assume that there exists k, an
accumulation point of {kn}. As {kn} ∈ NN, k may be assumed to be fixed, k = kn,∀n ∈ N (if not,
we can always consider a subsequence of {kn}). By definition we have:

|| − T̂ φ̂k|| ≤ τδn

as k is the accumulation point of the kn. k is not compulsory an accumulation point for the similar
sequence for the exact operator. However we will show that φk is also a solution of the problem with
an exact operator.

B A1 - We want to prove that φ̂k = φ̂δn

k → φk. We remark in particular that:

• (2.5.8)-3 ensures that φ̂j stays bounded and that ||φ̂j || < 2ρ for j ∈ [1; k].

• As ||T ′φ|| ≤ 1 for each φ ∈ B(0; 2ρ) and ||T ′φ − T̂ ′φ|| ≤ γn → 0 for φ ∈ B(0; 2ρ) then there exists
M ′ such that for each n ∈ N:

||T̂ ′φ|| ≤M ′ ∀φ ∈ B(0; 2ρ).



Let’s recall that for j ∈ [1; k − 1]:
φj+1 = φj + T ′∗φj

(−Tφj)

φ̂j+1 = φ̂j + T̂ ′∗
φ̂j

(−T̂ φ̂j)

with φ0 = φ̂0 an initial guess, φ0 ∈ B(0; 2ρ). We show the following lemma:

Lemma 2.7.1. ∀i ∈ [1; k],∃Ai, Bi ∈ R+ such that:

• Ai and Bi do not depend on n;

• ||φi − φ̂i|| ≤ Aiγn +Biδn.

Proof 1. We show this result recursively:

i=1 :

φ1 − φ̂1 = φ0 − φ0 + T ′∗φ0
(−Tφ0)− T̂ ′∗φ0

(−T̂ φ0)

= T ′∗φ0
(−Tφ0)− T̂ ′∗φ0

(−T̂ φ0).

Thus:

||φ1 − φ̂1|| ≤ ||T ′∗φ0
(−Tφ0)− T̂ ′∗φ0

(−Tφ0)||+ ||T̂ ′∗φ0
(Tφ0 − T̂ φ0)||

≤ γn||Tφ0||+ δn||φ0||M ′

thus the property holds with A1 = ||Tφ0|| and B1 = ||φ0||M ′.

Let’s suppose that the property holds for a given j ∈ [1; k − 1].

At step j + 1 we have:

φj+1 − φ̂j+1 = φj − φ̂j + [T ′∗φj
(−Tφj)− T̂ ′∗

φ̂j
(−T̂ φ̂j)]

Thus:
||φj+1 − φ̂j+1|| ≤ ||φj − φ̂j ||︸ ︷︷ ︸

I′

+ ||T ′∗φj
(−Tφj)− T̂ ′∗

φ̂j
(−T̂ φ̂j)||︸ ︷︷ ︸

I′′

.

We have by assumption: I ′ ≤ Ajγn +Bjδn. Moreover:

I ′′ ≤ ||T ′∗φj
(−Tφj)− T̂ ′∗φj

(−Tφj)||︸ ︷︷ ︸
I′′1

+ ||T̂ ′∗φj
(−Tφj)− T̂ ′∗

φ̂j
(−Tφj)||︸ ︷︷ ︸

I′′2

||T̂ ′∗
φ̂j

(−Tφj)− T̂ ′∗
φ̂j

(−T φ̂j)||︸ ︷︷ ︸
I′′3

+ ||T̂ ′∗
φ̂j

(−T φ̂j)− T̂ ′∗
φ̂j

(−T̂ φ̂j)||︸ ︷︷ ︸
I′′4

and it is easy to see that:



• I ′′1 ≤ ||Tφj || ||T ′∗φj
− T̂ ′∗φj

|| ≤ 2ρ||T ||γn;

• I ′′3 ≤ ||T || ||φj − φ̂j || ||T̂ ′∗φ̂j
|| ≤ ||T ||M ′(Ajγn +Bjδn);

• I ′′4 ≤ ||T − T̂ || ||φ̂j || ||T̂ ′∗φ̂j
|| ≤ 2M ′ρδn.

To obtain a bound on I ′′2 we will have to observe that for φ, φ̃ ∈ B(0; 2ρ):

||T̂ ′∗φ − T̂ ′∗
φ̃
|| ≤ ||T̂ ′∗φ − T ′∗φ ||︸ ︷︷ ︸

≤||φ||γn

+ ||T ′∗φ − T ′∗
φ̃
||︸ ︷︷ ︸

≤||φ−φ̃||

+ ||T ′∗
φ̃
− T̂ ′∗

φ̃
||︸ ︷︷ ︸

≤γn||φ̃||

≤ 2ργn + ||φ− φ̃||+ 2ργn

= 4ργn + ||φ− φ̃||.

Consequently:

I ′′2 ≤ ||T φ̂j || ||T̂ ′∗φj
− T̂ ′∗

φ̂j
||

≤ ||T || ||φ̂j ||(4ργn + ||φj − φ̂j ||)
≤ 2||T ||ρ(4ργn +Ajγn +Bjδn).

Finally:

I ′′ ≤ 2ρ||T ||γn + 2||T ||ρ(4ργn +Ajγn +Bjδn) + ||T ||M ′(Ajγn +Bjδn) + 2M ′ρδn

= δn(2||T ||ρBj + 2M ′ρ+ ||T ||M ′Bj) + γn(2ρ||T ||+ 8||T ||ρ2 + 2||T ||Aj +Aj ||T ||M ′)

and the property is verified at step j + 1 with :

• Aj+1 = Aj(1 + 2ρ||T ||+ ||T ||M ′) + 2ρ||T ||+ 8ρ2||T ||

• Bj+1 = Bj(1 + 2ρ||T ||+ ||T ||M ′) + 2ρM ′

that do not depend on n. Then we obtain the proof of the lemma.

�

Consequently:
||φk − φ̂k|| ≤ Akγn +Bkδn

and φ̂k = φ̂δn

k → φk when n→ +∞.

B A2 - At this point, we have that for an accumulation point k of {kn}, φ̂δn

k , the k− th iterate of the
Landweber iteration (with estimated operator) converges with n → ∞ towards the k − th iterate of
the Landweber iteration with exact operator. We still have to show that this function is also solution
of the initial problem. First we can notice that:

||Tφk − T̂ φ̂k|| ≤ ||Tφk − T φ̂k||+ ||T φ̂k + T̂ φ̂k||
≤ ||T || ||φk − φ̂k||+ ||T − T̂ || ||φ̂k|| → 0



as ||T || < +∞ (using Assumption 2.5.7), φ̂k → φk, ||T−T̂ || ≤ δn → 0 and ||φ̂k|| < +∞. Consequently:

||Tφk|| ≤ ||Tφk − T̂ φ̂k||+ ||T̂ φ̂k|| → 0

as

||Tφk − T̂ φ̂k|| → 0

and

||Tφk − T̂ || ≤ τδn → 0.

The main point is that as k is fixed. φk depends continuously on the (exact) data, and and as n→∞,
we get that ||Tφk|| = 0. So φk is also a solution for the exact problem and φ̂k → φk.

B Step B - We still have to consider the case where {kn} has no accumulation point: as {kn} ∈ NN,
kn →∞ with n→ +∞.

B B1 - Suppose for the moment that we have the following lemma that will be shown later.

Lemma 2.7.2. If φ̂k ∈ B(φ∗; ρ) and ||T̂ φ̂k|| > τδn with τ > 2 1+η
1−2η > 2 then φ̂k+1 is a better

approximation of φ∗ than φ̂k.

We admit it for the moment. Let ε > 0, we wish that it exists k̄ such as ∀kn ≥ k̄, ||φ̂kn
− φ∗|| ≤ ε.

Let k ∈ N. For kn ≥ k, we have by definition of kn:

||φ̂kn
− φ∗|| ≤ ||φ̂k − φ∗|| ≤ ||φ̂k − φk||+ ||φk − φ∗||.

As φ∗ is the limit of (φj)j∈N, there exists k̄ = k(ε) such that:

||φk − φ∗|| ≤ ε

2
.

Let n̄ = n̄(ε, k̄) such that Akγn + Bkδn ≤ ε
2 , ∀n ≥ n̄. Then for n sufficiently large, we have both

kn > k̄ (with k̄ 6= k(n)) and n ≥ n̄(ε, k̄) implying ||φ̂kn
− φ∗|| ≤ ε.

What’s important is that at one moment, with ε fixed, we have fixed a k̄ that do not depend on n

such that Ak and Bk are fixed.

B B2 - Finally we have to show Lemma 2.7.2. Let’s assume that φ̂k ∈ B(φ∗, ρ) then clearly φ∗ and
φ̂k ∈ B(0; 2ρ). We have moreover (T̂ ′φ)∗ = ˆ(T ′∗φ ) as we work under suitable probability densities π and
τ (see Florens et al. (2009))



||φ̂k+1 − φ∗||2 − ||φ̂k − φ∗||2 = 2 < φ̂k+1 − φ̂k; φ̂k − φ∗ > +||φ̂k+1 − φ̂k||2

= 2 < T̂ ′∗
φ̂k

(−T̂ φ̂k); φ̂k − φ∗ > +||T̂ ′∗(−T̂ φ̂k)||2

= 2 < (−T̂ φ̂k); T̂ ′
φ̂k

(φ̂k − φ∗) > + ||T̂ ′∗(−T̂ φ̂k)||2︸ ︷︷ ︸
≤||T̂ φ̂k||2

≤ 2 < −T̂ φ̂k;−T̂ φ̂k + T̂ ′
φ̂k

(φ∗ − φ̂k) > −2||T̂ φ̂k||2 + ||T̂ φ̂k||2

= 2 < −T̂ φ̂k;−T̂ φ̂k − T̂ ′
φ̂k

(φ∗ − φ̂k) > −||T̂ φ̂k||2

≤ 2||T̂ φ̂k|||| − T̂ φ̂k − T̂ ′
φ̂k

(φ∗ − φ̂k)|| − ||T̂ φ̂k||2

= ||T̂ φ̂k||(2||T̂ φ̂k − T̂ ′
φ̂k

(φ∗ − φ̂k)|| − ||T̂ φ̂k||).

We have that Tφ∗ = 0, so:

||T̂ φ̂k − T̂ ′
φ̂k

(φ∗ − φ̂k)|| = ||T̂ φ∗ − T̂ φ̂k − T̂ ′
φ̂k

(φ∗ − φ̂k) + Tφ∗︸︷︷︸
=0

−T̂ φ∗||

≤ ||Tφ∗ − T̂ φ∗||︸ ︷︷ ︸
≤δn

+ ||T̂ φ∗ − T̂ φ̂k − T̂ ′
φ̂k

(φ∗ − φ̂k)||︸ ︷︷ ︸
≤η||T̂ φ∗−T̂ φ̂k||

≤ ||T̂ φ̂k||(2δn − 2η ||T̂ φ∗ − T̂ φ̂k||︸ ︷︷ ︸
≤||T̂ φ̂∗||+||T̂ φ̂k||

||T̂ φ̂k||)

≤ ||T̂ φ̂k||(2δn + 2ηδn − ||T̂ φ̂k||) + ||T̂ φ̂k||
= ||T̂ φ̂k||(2δn(1 + 2η)− ||T̂ φ̂k||(1− 2η)) < 0 by assumption

and then φ̂k+1 is a better approximation of φ∗ than φ̂k.

This achieves to prove the convergence of the method.

�



Chapter 3

Nonparametric Analysis of Hedge

Funds Lifetimes

joint work with Jean-Pierre Florens and Serge Darolles1, Working Paper. To be submitted.

Abstract

Most of Hedge Funds databases are now keeping history of dead funds in order to control for biases in
empirical analysis. It is then possible to use these data for the analysis of Hedge Funds lifetimes and
survivorship. This chapter proposes two nonparametric specifications of duration models. First, the
single risk model is an alternative to parametric duration models used in the literature. Second, the
competing risks model consider the two reasons explaining why Hedge Funds stop reporting. We apply
the two models to Hedge Funds data and compare our results to the literature. In particular, we show
that a cohort effect must be considered. Moreover, the reason of the exit is a crucial information for
the analysis of funds’ survival as for a large part of disappearing funds, their exit cannot be explained
by a low performance or a low level of assets.

1This chapter is adapted from Darolles, S., Florens, J.P., Simon, G. (2010), Nonparametric Analysis of Hedge Funds

Lifetimes
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3.1 Introduction

Hedge Funds’ reporting is related to the objectives of their managers. All the information was formerly
provided on alive funds only, but the industry of Hedge Funds, contrary to mutual funds, exhibits a
high level of attrition. The appearance of those dead funds bases follows a stream of academic papers
underlining that unavailable data on dead funds led to numerous statistical biases. With those data,
it is thus possible to analyze in a static fashion, the differences between living and dead funds by
conditioning on the status (alive or dead) of the fund.

However, a dynamic approach is a more ambitious and flexible framework to model the probability
to die (across time) conditionally on some (potentially dynamic) fund characteristics. And in this
framework, censorship is not always well taken into account in empirical studies. For example, Pojar-
liev and Levich (2010) presents a statistical study on funds categorized along a posterior, observable
status at the date of study, depending on the fact that the funds are alive or dead. One cannot draw
two distinct studies on funds depending on their current status since information is carried by both
alive and dead funds. Similarly, conditioning by the age of the fund may be not sufficient, as the
whole set of variables (returns, assets, and age of the fund) are random processes that are mutually
linked. From a mathematical perspective, alive funds are individuals for which the death has not yet
been observed (censored funds) but that still depend on the same framework of analysis. The dynamic
approach is a growing field of research, but related papers mainly often use parametric specification
and focus on a single risk framework. However, failure is not the only reason why Hedge Funds stop
reporting to databases. Starting and stopping to report depend on proper and historic characteristics
of the fund. If the fund performs well, the amount of assets under management (henceforth AUM)
may reach a critical size, above which arbitrages may not be profitable. The manager can decide that
the fund does not need new clients, and stops the publication of its performance. This may explain
that in practice some funds exhibit just before their exit, a good performance and a high level of AUM.
However, the exit from the database may also simply mean the end of the life of the fund (liquidation,
default, etc.), or the willing of its manager to hide bad performances before liquidation.

The aim of this chapter is to discuss the specification choices made in this literature on Hedge Funds
lifetimes. First, we propose to adopt a nonparametric framework, rather than a parametric one, to
avoid mis-specification biases and get robust estimation of hazard intensities of default. Second, we
take into account the reasons for the exit. In this context, we take as a standard the use of covari-
ates, including dynamic ones, as performance and AUM for instance. It is straightforward that the
lifetime duration have to be cautiously defined. We must admit that we cannot take into account a
self-selection bias since our data are only available thanks to voluntary publication. We do not observe
funds that have never decided to appear in a database. Those funds may have been liquidated just af-
ter their creation, or may be for instance family funds that do not need to publish their performances.
However, it is coherent to think that any fund appearing in a database has needed once, to collect new
investors. In the opposite case, database publication would be useless. We are consequently focusing
on funds needing to report performance and to collect investors.

In Section 3.2, we present features of Hedge Funds lifetimes, including advantages and drawbacks of
using Hedge Funds databases. We precisely define how lifetimes are calculated and present common
biases studied by the literature in Section 3.3. Then, we present the estimation procedure, particu-
larly focusing on the nonparametric framework and the use of covariates, including competing risks



model. Section 3.4 presents our results, where we underline that nonparametric estimation avoids the
problems of mis-specification when studying hazard intensities. We present also a strong influence of
the inception date of the fund as a covariate and accounts for the importance of identifying the cause
of the exit of the fund.

3.2 Data and definition of lifetimes

Each Hedge Fund defines its own rule of reporting, and potentially publishes its performances in
a database. This induces several classical biases: and Hedge Funds lifetimes and survivorship are
difficult to study precisely2. This section reviews the previous contributions made on the subject.

3.2.1 In the literature

All academic studies agree on some fundamental points. Hedge Funds show a high degree of attrition
within each year3. Fung and Hsieh (1997b) study the evolution of this rate between 1990 and 1996 and
find values around 19%, much higher than for mutual funds. Brown et al. (1999) find a value around
14% each year during the period 1987-1996, and Amin and Kat (2002) find values of the same order
for period 1994-2001. However, these results depend on the database and on the period: crises impact
deeply death and birth processes of Hedge Funds. Moreover, attrition and instantaneous probability
of failure are two different concepts.

General considerations on the analysis of Hedge Funds survival and its link with style and character-
istics may be found in Liang (2000) and Barès et al. (2007). Other contributions estimate survival
probabilities as a function of characteristics, past performance and risk statistics. Hendricks et al.
(1997) assume that performance could improve the survival probability, and also propose the idea
that survivorship bias may induce some patterns in Hedge Funds survival analysis. Brown et al.
(2004) identifies a strong relation between bad performance and consecutive disappearance from the
database. Gregoriou (2002) provides a technical study of Hedge Funds survival based on covariates
taken among lagged performance, fund strategy, leverage, or characteristics (fees, redemption, etc.).
This work has been extended by models using default intensity like Grecu et al. (2007), pointing out
that for dying funds, performance is generally poor at the end of the fund’s life. However, when
controlling for covariates, this has to be done on the whole life of the fund as in Ang and Bollen (2010)
who use a dynamic Cox model with dynamic covariates. All these works use a single risk approach.
They focus on the exit of the fund from the database, not on the cause of the exit.

In fact, there are two potential reasons to explain the exit from a database. But studying the exit
from a database is useful only if we can separate between those reasons. This is a matter of identifi-
cation, since if the reasons for the exit are fundamentally different, the blind mixing of the two risks
leads to false interpretation, implying an over-estimation of the rate of attrition of the industry. In
Rouah (2005) Hedge Funds lifetimes are studied with time-dependent covariates, along with the cause
of exit under the assumption of independent risks. The paper underlines that avoiding to separate
liquidation from other kind of withdrawal leads to severe biases (especially over-estimation of the
survivorship bias). Amin and Kat (2002) explains that it may be due, for instance, to a lack of size

2We give in Section 3.A.4 the overview of the academic contributions on Hedge Funds durations.
3This degree of attrition can be easily estimated by counting the proportion of funds that are alive or dead at the

end of each year.



or performance. In some databases, the main reasons explaining the death of a fund are sometimes
detailed. It may have been liquidated, merged, its assets transferred in an other fund; the minimum
capacity of the fund may have been reached after several redemptions during a market turmoil, or the
main investor may have left the fund; the company may have been closed, the manager may have left,
or the team-management has decided to concentrate on other strategies.

Appropriate covariates have to be found in order to analyze Hedge Fund lifetimes. For this, AUM
is generally assumed to be a good indicator of funds’ status. Assets and performance are generally
supposed to decrease the funds’ default intensity. But the other potential reason to explain the
withdrawal of a fund from a database is that the fund has reached a maximum capacity and then
that it is closed to investment. In some successful Hedge Funds, the manager may think that the
fund has reached a sufficient size in order to keep its ability to generate performance. This is linked
with characteristics that are relative to the specificity of each fund and the decision to stop to collect
money is related to the fund’s objectives and possibilities. Amin and Kat (2002) explicitly don’t afford
much attention on this point, as Grecu et al. (2007) who explain that the first reason (dying funds)
is the most frequent and that the lack of data concerning successful funds stopping to collect is not
a problem in practice. Conversely, Ackermann et al. (1999), Gregoriou and Rouah (2002) or Rouah
(2005) stress that this kind of exit must be considered: if not the attrition rates are too high when
this separation is not made. The survivorship bias is also affected.

3.2.2 TASS database

A large number of Hedge Funds databases are available, with their own specificities and characteris-
tics. We use here the TASS database4 for at least two reasons. Information concerns both alive and
dead funds. A large number of fields is available, which allows to control for biases and to improve
the study. We first describe the TASS database of 2009, June the 25th. The database is made of two
group of funds, depending whether they are Managed Futures/CTA funds, or not. For each category,
there is a file concerning alive funds, and a “graveyard” containing dead funds. For a given file, it
consists in a list of fund shares, each share being identified by an unique number. Each share corre-
sponds to a given currency. In addition to CTA and Managed Futures, the represented strategies are
among the main Hedge Fund strategies such as single strategies (Long/Short Equity, Event Driven,
Global Macro, Fixed Income Arbitrage, Multi-Strategy, Convertible Arbitrage, Dedicated Short Bias,
Emerging Markets, Equity Market Neutral, Emerging Markets, Options Strategy) and fund of funds.
Information on the fund status is published concerning status, dates, liquidity and performance. For
example, the domicile country or state, public opening, leverage, management and incentive fees, pres-
ence of a highwater mark, and dead reason (when the fund is dead) are displayed. Moreover, dates
when the fund has been added and/or removed from the database; dates of inception, start and end of
performance are indicated. Concerning liquidity and investment constraints, subscription/redemption
frequency, redemption notice period, lock-up and lock-up period may also be indicated. Finally, turn-
ing to historical performances, monthly returns (published or estimated by TASS), NAV (see p.170),
and AUM are sometimes given (in domicile currency).

An open discussion concerns the field called drop reason about which academic contributors are still
puzzled. As Baquero et al. (2005) or Rouah (2005), Boyson (2002) focuses first on explicitly liquidated

4As Boyson (2002) (who use a database from 2002), Amin and Kat (2002), Getmansky et al. (2004b), Grecu et al.

(2007) (database of 2004) or Liang and Park (2008) (database of 2004) for instance.



funds only. Getmansky et al. (2004b) also insist on the importance of this field. Kundro and Feffer
(2003) go further as they distinguish fund’s failure (external reasons force the fund manager to stop)
from fund liquidation (the collect of fees is not sufficient, the manager ceases activity before re-
launching a new fund to reset the highwater mark to a new level). This suggests to use this drop
reason with caution and with additional filters on the data.

3.2.3 Hedge Funds lifetimes

3.2.3.1 Lifetimes definition

In summary, the life of a fund in a database may be decomposed in the following way. First the fund
is created (inception date). After that, the fund may possibly enter the database (date added) and
reports performance. Consequently, the first date of report may be anterior to the date of entry in
the database, but not to the inception date. When the fund disappears from the alive database, it
enters the graveyard with a dead reason, and the last performance date is equivalent to the death
date of the fund. The death of the fund may be explained by the fact that the fund is closed to
new investment, dormant, liquidated, no longer reporting, liquidated, merged into an other fund, that
the program is closed or that it is not possible to contact the fund. If the fund stops reporting,
two potential causes may explain this event. First, the fund is poorly performing and is liquidated,
merged, or closed down, and ceases activity. But if the fund performs well, the manager may de-
cide to stop from collecting new investors, and does not report performance any more. If the fund
seeks new investors, it continues to report and is neither closed or dead: its performance is still observ-
able in the database. This implies to define in a clear fashion the entry and the exit from the database.

If each information in a database was perfect, any study on Hedge Funds lifetimes would be easy. The
first reporting date would be equal both to the entry date in the database, and to the inception date.
For funds still alive, report would be updated until the current date. Each field would be cautiously
reported. Between entry and exit of the database, both performance and AUM would be given at each
date. Consequently, lifetime durations of Hedge Funds would be easy to analyze with all covariates
available in the database (fund characteristics, performance, AUM). However, databases show some
practical limits that constrain our study.

3.2.3.2 Initial date

It is well known that Hedge Funds databases suffer from numerous drawbacks, the first one being the
backfilling bias. A fund can be added to a database a long time after its inception and backfills its
history with past performance5. When a fund decides to backfill its track return, the manager has the
choice of the first date, with the possibility to skip first returns if this performance is bad. In some
cases, funds report performances anterior to their inception date: these are synthetic (not real but a
posteriori re-estimated ) performances. Funds with first report before inception are clearly backfillers
and must be dropped from the sample. This assesses the choice of the inception as the initial date, as
it is commonly made in the literature.

Assumption A.1 The initial date corresponds to the inception date, and only funds that display
explicitly an inception date are considered.

5This occurs frequently since funds can be older than the database: young and bad-performing funds that have not

been able to survive, do not appear in the database.



3.2.3.3 Date of exit

A second drawback, named reporting bias, is in the potential delay in the report of performances. For
instance, funds classified as alive in June 2009 (and thus with data at the end of May 2009) may not
have published their performances at this date. The fund may still be in activity with figures that are
not yet available (because of liquidity, mark-to-market reasons, or other causes). We then consider
data at a former date than the last date available of our database and use this to potentially upgrade
the graveyard. The date of study remains May 2009 (last data). But funds in the alive database are
dropped to the graveyard if their status explicitly indicates it6 (liquidated, no longer reporting, or
unable to contact it) or if it’s not the case, that the last report is anterior to four months (no data at
the end of January).

Assumption A.2 A fund is considered as dead if it is in the graveyard, including funds with too
much delay or explicit dead reason. Final date for dead funds is the date of last performance report,
and the fund is uncensored. Final date for alive funds is the date of study, and the fund is considered
as censored.

As a consequence to assumptions A.1 and A.2, we calculate the lifetime of the fund as the time be-
tween the initial and the final date. We must add that we have to assume throughout this chapter
that censorship and durations are independent. If it was not the case we could not identify the law
of the observed durations. This seems to be a plausible hypothesis in our framework since censor is
made by the current observation date. Note that taking censorship into account is crucial in survival
analysis and must always be done (contrarily to the approach of Grecu et al. (2007) that only make
inference on uncensored funds).

3.3 Model specification and estimation

This section discusses the specification and the estimation of the single and the competing risks models.

3.3.1 Model specification

Single risk models are first considered. The competing risks approach can then be seen as a multivariate
extension of this framework.

3.3.1.1 Single risk model

Our aim is therefore to estimate the hazard function λ(t) for the survival of Hedge Funds, as its
interpretation is intuitive and its shape carries valuable information. Mainly, since hazard rate at t
is homogenous to the intensity for each fund to exit the database at date t, the higher the hazard
rate, the more likely the fund is to stop reporting performance. In general, this rate is not constant
and young funds have a greater instantaneous probability to exit the database (see e.g. Brown et al.

6As the database is updated by TASS at given dates, it may appear that between two of them, some dead funds

have not joined yet the graveyard.



(2001), Amin and Kat (2002)). But the precise form of this shape is still subject to questions. The
parametric framework constrains the analysis by imposing a predetermined form, and misses some
information at specific moments of the life of the fund. Monotonic decreasing forms assume that fund
managers take benefit from their experience and that aged funds are less likely to die. Inverted U-
shape assumes that funds without experience take more risk and die; old funds cease to collect assets,
explaining this U-shape. U-shape patterns is the most common choice (Gregoriou (2002), Grecu et al.
(2007)). The intensity increases, reaches a maximum value and then decreases for aged funds.

An improvement of the previous approach is to specify this intensity as a (deterministic) function of
time and also of (potentially dynamic) covariates. In Cox proportional hazard models, dependence
towards covariates x is introduced via a function ψ such as the density of the duration is supposed
to be f(tψ(x))ψ(x). In this framework, λ(t) for each individual is assumed to be proportional to the
product of a baseline hazard function λ0(t) and a function ψ(x, β) of covariates x : λ(t) = λ0(t)ψ(x, β).
The model remains semi-parametric as soon as no assumption is made on λ0(t), and β is a parameter
to be estimated. The ψ function is usually ψ(x, β) = exp(β′x), which allows to estimate separately the
effect of the covariate, and the baseline intensity. Other forms are possible such as ψ(x, β) = 1 + β′x

or ψ(x, β) = log(1 + e(β
′x)).

3.3.1.2 Competing risks model

When several failure types exist the related framework is referred to as competing risks models. For
each individual, the risks are of different natures, and several mechanisms are in competition to ex-
plain the causes of failures. Suppose that failure may be caused by m distinct types of risks: for each
individual this implies m failure times, which are called latent or potential times. For each risk i,
the potential time of failure will be Ti, and the observed time of failure is T = min(T1, ..., Tm). But
the specification in those models have to be cautiously discussed. Three different questions arise (see
Kalbfleisch and Prentice (2002)): first, one may study the specific behavior and the probability of
occurrence of each failure type; second, the objective may be to examine, under a predefined set of
hypotheses, the interdependence between those failure types; finally, an interesting point may be the
effect of the removal of one risk on the occurrence of the others.

Turning to Hedge Funds lifetimes, the motivation for such models is straightforward. If the fund
defaults because of bad performances, this failure type will be labelled T−. On the contrary, if the
fund is a good performer, the manager decides to stop reporting because he does not need any new
investor, this will be labelled T+ since it implies a withdrawal from the database. If those two risks
respectively lead to latent times of exit from the database T− and T+, the observed time of failure is
T = min(T−, T+).

Basically, identification is only possible if in addition of the time of failure, the cause of the failure
(namely the nature of the risk) is observed. Then, the set of observations has to be of the form (T, j)
where T is the failure time and j ∈ [1;m] is the cause of the failure. However, even corresponding
time-independent covariates are insufficient to fully explain the interrelation between risks and to
ensure identification (see Tsiatis (1975)). The problem is that given a competing-risks model with
dependent durations, it is possible to find a different model, with independent durations, that is how-
ever observationally equivalent.



Given time-dependent covariates x(t), an identifiable quantity is however the type-specific hazard which
is defined as :

λj(t, x(t)) = lim∆t→0
P[t ≤ T ≤ t+ ∆t, J = j|T ≥ t]

∆t
where T is the observed failure time and j the cause of the failure. In our study m = 2, and
two causes cannot occur simultaneously. Some other functions may be introduced (overall fail-
ure rate, overall survivor, cumulative incidence function, etc.) but even a function of the form :
Sj(t, x) = exp(−

∫ t

0
λj(u, x(u))du)) cannot be interpreted as a survivor function, when no additional

assumption on the interdependence of the competing risks is introduced.

We assume that the two risks of type 1 and 2 are independent and specify a semi-parametric form for
the j-th intensity:

λj(t, x(t)) = λ
(j)
0 (t)exp(β′jx(t))

where x(t) is a set of covariates whose underlying left-continuous, with right limits, and j ∈ [1;m].
λ

(j)
0 (t) is left unspecified and will be nonparametrically estimated.

3.3.1.3 Estimation

We provide in Appendix A.3 parametric and nonparametric estimation procedures in the single risk
framework without covariates. We first focus here on the estimation of a dynamic Cox model using
covariates, with a nonparametric baseline intensity. Then, we discuss the estimation of competing-risks
models.

3.4 Empirical study

In addition to the results on the whole database, we also present results by separating funds along
with their declared strategies. All the results are compiled in Appendix 3.A.

3.4.1 Descriptive statistics

First we merge the CTA file in an overall database. Then we obtain a database made of 6121 funds
and a graveyard of 8102 funds. The description of the database by strategy is available in Table 3.1.
The histogram of raw durations is given in Figure 3.1. We also present in Table 3.2, separating along
main strategies, some descriptive statistics: mean duration, empirical mode and empirical quantiles.
The category Long-Short Equity Hedge represents the main part of single funds (1521 funds out of
3963). We aggregate CTA and Managed Futures categories, which form one of the main categories
after Multi-Strategy, Event Driven, Global Macro, Equity Market Neutral, Fixed Income Arbitrage,
and Emerging Markets.

The mean durations for single funds and fund of funds are quite close, around 60 months (5 years). It’s
straightforward that single funds durations behavior is mainly driven by Long-Short Equity Hedge.
This quantity is however coherent as for each strategy, the mean duration is comprised between 50
and 70 months. The strategies with the shortest mean durations are Global Macro, Equity Market
Neutral, and Multi-Strategy, this being also verified for the upper 95% empirical quantile. Conversely,
Event Driven and CTA-Managed Futures are strategies with the longest mean duration. It may be



observed that in the case of CTA, there are much more dead funds, then less censored individuals,
which may explain this fact. The more recent is a strategy, the younger the funds and the shortest
the mean duration.

3.4.2 Single risk analysis

3.4.2.1 Nonparametric intensities

In this section, we compare parametric and nonparametric estimations of the hazard intensity for
Hedge Funds lifetimes. First, our aim is to check whether the specifications commonly used in the
literature are justified. Second, we try to evaluate whether the nonparametric estimation can improve
the understanding of a hedge fund lifetime. Third, we want to adapt our conclusions depending on
the several strategies. Concerning the parametric fitting, we use a log-logistic law. This distribution
is commonly chosen (see e.g. Gregoriou (2002) or Grecu et al. (2007)). Results7 are given in Table
3.3. We recall that the density of a log-logistic distribution of parameters (µ, σ) is given by:

fµ,σ(x) =
e

ln(x)−µ
σ

σx(1 + e
ln(x)−µ

σ )2

where µ is the location and σ the scale parameter. A convenient expression is obtained when ρ = e−µ,
κ = 1/σ:

f(t) =
κρκtκ−1

(1 + (ρt)κ)2
S(t) =

1
1 + (ρt)κ

λ(t) =
κρκtκ−1

(1 + (ρt)κ)
.
The obtained modes for the hazard rates (that is the time at which the highest intensity of default
is reached), are around 40 months, which is coherent with the values obtained in the literature (see
Grecu et al. (2007)), yet a bit inferior. They are also coherent with the order of magnitude of the
empirical modes8.

The true interest of such a model is to compare these results with nonparametric estimation of the
hazard intensity. For this, we must first build the confidence bounds of the parametric curve. We note
θ = (µ, σ) the parameters of the log-logistic distribution and θ̂ their maximum likelihood estimates.
If the hazard function is given by t 7→ λ(t, θ) the confidence interval for λ(t) at level α is given by:

λ(t, θ̂)±
q1−α/2√

N

√
∂λ

∂θ
× V × ∂λ

∂θ′

where N is the number of observations, q1−α/2 is the quantile of a standard gaussian law, V is the
estimated variance of the parameters. This expression is obtained with the application of a usual
δ-method. The results are presented from Figures 3.2 to 3.12. For each strategy, it appears that the
choice of the log-logistic function is coherent with the general shape of the nonparametric intensity ob-
tained most smoothed Kaplan-Meier estimator. These estimators evokes an inverted U-shape pattern.
The intensity is increasing in the first years, reach a peak and then decreases. This is at least valid
for the earlier years of existence of the fund. It is not coherent to draw this intensity for very high

7The same study has been done for discrete durations. The results are not presented here, but they are very similar

and do not modify deeply the conclusions.
8However, as the histogram of durations is often sparse or not well designed, the empirical mode is not very infor-

mative.



durations (over 10 or 12 years) as there are then not enough funds in the sample for the estimation
to be reliable. For each strategy, we add the evolution of the proportion of funds still in the sample
across time, along with a threshold (set to 10%) to ensure that the intensities are still representative.

At a finer scale, several differences appear. First, the log-logistic specification is more appropriate for
fund of funds than for single funds. For single strategies, the log-logistic specification is particularly
adapted to Event Driven and Fixed Income Arbitrage funds. For Event-Driven funds, the nonpara-
metric law has nearly exactly the same shape and the same mode than the parametric one. Long-Short
Equity Hedge, Equity Market Neutral, and CTA intensities have roughly a nonparametric intensity
that is of the same shape than in the parametric case, even if the intensity is not in the confidence
interval during some months, before becoming close to the parametric specification after same time.
For Multi-Strategy funds, the parametric specification is plausible but the nonparametric intensity
decrease is stronger after 60 months than suggested by the parametric specification. The situation is
more critic for Emerging Markets and Global Macro funds where the intensity is quite monotonous,
increases, crosses the parametric intensity and exhibits an irregular pattern. Consequently for those
two categories, the mode of the default intensity suggested by the nonparametric estimation is higher
than the one obtained with the parametric estimation. Excepted Multi-Strategy and Event Driven
funds, this conclusion is also valid for most strategies. Generally speaking, we cannot confirm the
finding of Gregoriou (2002) that default intensity decreases after having reached a peak : except for
Multi-Strategy, the behavior of the intensities after having reached a local mode is quite steady or
non-monotonic.

In conclusion, the parametric specification of the log-logistic distribution is coherent with the general
shape suggested by the nonparametric estimation. If the choice may be justified for several strategies,
the parametric distribution systematically under-estimates the modes (up to two years) and the long-
term hazard intensities. On the contrary, the real initial hazard intensity is strictly different from
zero, a fact which is missed by the parametric analysis. Then, the nonparametric analysis capture
specific features of the intensities and avoid specification problems (short-term under-estimation, and
long-term over-estimation).

3.4.2.2 Including covariates

The former analysis is descriptive and useful, yet limited. We then introduce covariates. The intensity
writes : λ(t) = λ0(t)φ(xt), xt being the past and current values of appropriately chosen covariates x.
When the remaining λ0(t) is constant equal to λ, all information is captured by the model. A “noisy”
structure remains and λ0(t) = λ is the intensity of a homogenous Poisson process.

Performance and AUM appear as two natural covariates for the study, but other variables have been
considered. Amin and Kat (2002) examine the fund leverage, even if Barry (2002) minimizes the
impact of this variable; Grecu et al. (2007) proposes to incorporate the Sharpe Ratio and the volatil-
ity of the fund return. Baquero et al. (2005) is concerned with the investment style and Gregoriou
(2002) tests the influence of management fees, performance fees, minimum purchase, mean returns, or
redemption periods. This is also in line with Avellaneda and Besson (2007) that develop the concept
of skill-capacity i.e. the maximum amount of money a manager can expect without decreasing its ar-
bitrages and consequently its performance. As in Couderc et al. (2008), one may also think to include
business or economic variables or indexes. In our study, we mainly consider performance and AUM.



But an additional variable is considered: the distance between the date of inception and a static date9

to deal with potential cohort effects. A mistake may be found in parametric studies related to para-
metric or semi-parametric estimation of default intensity with covariates. When assuming an intensity
λ(t) = λ0(t)ψ(Z) where Z are (potentially time-dependent) covariates, it is pointless to include time
as an explanatory variable in Z, as all the time dependence will be captured by λ0(t).

As a fund cannot enter our analysis as soon as at a given date, some data remain undisclosed, we
recall that we use the method described in Appendix 3.A.5 to avoid to drop too much funds in our
study. Moreover, we exclude backfillers, i.e. funds that present data before their inception date. The
chosen form of the hazard intensity is:

λ(t) = λ0(t)exp(β′x(t))

where λ0(t) is left unspecified. As the missing data problem shrinks the number of available funds
for the study, we will mainly focus on Single and Fund of Funds. Moreover, only funds in the same
currencies (returns, performance, assets) can be part of the study. We decide here to consider all
the funds in US Dollars. This is coherent as the funds in the database are shares, which are often
shares from the same fund in different currencies. Selecting USD funds is a way of selecting some
representative shares of funds: this is also done by Liang and Park (2008). The number of funds
available for the study is given in Table 3.4. The coefficients of several “nested” models are given in
Table 3.5 for single funds, and Table 3.6 for funds of funds.

Among the chosen variables we consider the monthly returns (Returns), the level of equity10 (Equity),
the logarithm of the level of AUM11 (ln(AUMt)), the monthly log-return of AUM (∆ ln(AUMt/AUMt−1))
and the difference in days between the inception date of the fund and12 a static date, taken here as
the 1st of January 1990 (Date Ref ). Results are provided in Table 3.5 for single funds, and in Table
3.6 for funds of funds.

For single funds and fund of funds, we see that for models with one or two variables, and without Date
Ref, all the coefficients are significant. All these coefficients are negative, suggesting that a higher level
of the covariate decreases the intensity of default. This is intuitive as high levels of performance, return
and AUM, may be indicators of good health of the fund. However, when we include the Date Ref
variable, this variable captures most of the dynamic of the intensity. Both for single and fund of
funds, return and log-return of AUM are no more significant. For single funds, Equity and AUM are
plausible explicative variables, whereas for fund of funds, only the AUM variable appears to affect the
intensity. In conclusion, the only variables of concern are AUM, Equity and the “reference date”. This
last variable accounts for a cohort effect, suggesting that all other parameters being equal, younger
funds are more at risk than old ones.

A parametric specification in this context of the baseline intensities (non-monotonic and not always
with an inverted U-shape) would be difficult since it would be too constraining and would lead us

9We take here arbitrarily this date as the 1st January 1990 but any static reference date could be used. However, a

reference date too far from the sample of the inception dates could lead to potential scale effects that shrink the mean

level of the baseline intensity.
10If Rt denotes the monthly return of a fund, we define the level ET of equity at time T as ET = ΠT

t=1(1 + Rt).
11In millions of USD.
12We specifically here focus on a limited set of variables. Nonlinear functions of the return or financial indicators as

in Couderc et al. (2008) have also been included but appeared to be not really informative.



to miss the specific features of the baseline (especially its flatness). The obtained nonparametric
intensities are given in Figure 3.16 and 3.16.

3.4.3 Competing risks analysis

In the single risk framework, no distinction is made on the nature of the exit. When a fund is still
reporting, one may be interested in the potential issues he is going to face in a near future. The
probability of exit from the database is interesting in itself, but what is more pertinent, is to forecast
or to assess the reason for it. Bad performers are liquidated, whereas good performers may be still in
activity after their exit from the database.

3.4.3.1 Competing risks model

A simple simulation exercise can be made to illustrate the importance of using competing risks model.
Draw a sequence of N couples of parameters (µi, σi)i∈[0;N ] ∈ [−r; +r] × [sm; sM ] with r, sm, sM > 0.
Then, make for each i a random simulation path of independent monthly gaussian returns Rt with
mean µi and variance σi. For each i, simulate two independent durations T+

i and T−i , with the
respective intensity processes: λ+(t) = λ0(t)exp(β×Rt) and λ−(t) = λ0(t)exp(−β×Rt). The easiest
way to run the simulation is to draw for each individual i two independent realization E+

i and E−i of
Exp(1) variables. Then T+ and T− are obtained as :

∫ T+
i

0

λ0(t)exp(βRi
t)dt = E+

i and
∫ T−i

0

λ0(t)exp(−βRi
t)dt = E−i .

The simulations are made with the same positive value for β but with a positive sign for exit T+ and
a negative sign for T−. λ0 is chosen identical for both risk (log-logistic for instance).
If we leave out in our analysis the true generating process of the durations, and that we only consider
the times Ti = min(T+

i , T
−
i ) (regardless of the cause, T+ or T−), with the return as a dynamic covariate

and the exact model λ(t) = λ0(t)exp(γRt), we find a value of γ which is close to zero, significatively
different from β. As two populations with opposite risks are aggregated in similar proportions, both
effects compensate the other in the estimation. Then, leaving aside the cause of the failure leads to
estimated coefficients that are severely biased.

3.4.3.2 Estimation

To estimate a competing risks model, we have to identify the cause of the failure of the fund. This
cause is not always observed and we have to set a procedure to decide whether the fund exits the
database because of bad or good performance. The decision is made along two criterions: the death
reason of the fund in the database and/or its level of AUM at the time of exit.

First, all the funds that classified as “closed to new investment” in May 2009 are considered as exiting
the database because of good performance (exit of type T+). For the other uncensored funds, we con-
sider that the funds have an exit of type T−, when their AUM at the time of exit is below 200 millions
of US dollars or that this value is less than 75% of the maximum value reached by the total AUM.
In the opposite case (high AUM, above 200 millions, and more than 75% of the maximum value) the
exit is considered as of type T+ and that the fund is exiting from the database because it has reached



a sufficient capacity13. Those two values are chosen to represent a selective, upper quantile of the
distribution of AUM. It may be observed empirically that the distribution of the variable made by
the ratio of the last AUM on the maximum AUM of the fund is quite uniform except in one, where it
reaches a peak. This suggests that a huge proportion of funds exit the database without experiencing
a large decollect of assets. The number of resulting funds are given in Table 3.7. The number of funds
for the T+ label are not very sensitive at this level to changes in the quantitative criterions on the
AUM selected here.

The result of the estimation are given in Table 3.8. The effect of the reference date is quite homogenous
for single and fund of funds. However its effect is modulated for single funds as the effect is more
important for the T+ exit. For single funds and T+ exit, we find that both Equity and AUM have
a positive influence in the increase of the positive default intensity. This is coherent since better
performance and more AUM increases the possibility of the fund to be closed to new investment, and
then to stop reporting. Concerning the T− exit, we recover the former interpretation concerning AUM,
but equity seems to be not significant in this case. For fund of funds, we recover for the negative exit
the former interpretation for AUM, but which is not significant for the positive exit. The resulting
baseline intensities are given in Figure 3.16 and 3.17.

3.5 Conclusion

We define in this chapter a precise framework to study Hedge Funds lifetimes. The more convenient
way to study durations is to define them as the difference between the last date of performance report
(after consolidation of the database) and the inception date (when available) of each fund. Inclusion
of censorship is crucial. Results in the single risk framework are greatly improved by nonparametric
estimation since even if the choice of the log-logistic function is justified for some Hedge Funds strate-
gies, the parametric hazard intensity are systematically under-estimating the probability of exit in the
early times, and behavior on the long-term depends on the strategy, with modes of distributions that
are too low, up to two years. The use of covariates is crucial, and the inclusion of the absolute date
of inception of the fund allows to account for a cohort effect capturing most of the information.

Finally, competing risks model are a necessary improvement since a large part of the exiting funds with
disclosed data have an exit which may not be explained by poor performance. Not taking the nature
of this exit into account would lead to a severe bias in the estimation. Further research is needed
on the subject, on the identifiability conditions of the competing risks (by including for instance a
rule taking into account the highwater mark) and on the potential heterogeneity arising through the
dynamic nature of the link between performance, AUM, liquidity and survival.

13This method is close to the one of Liang and Park (2008) who underlines that AUM and performance are better

indicators of failure than status. They identify real failure when three criterions are met: the fund has stopped reporting,

performance is deteriorating on the last six months, and AUM is decreasing during the last year. They also use highwater

mark to improve the identification of true liquidation.



3.A Tables and Figures

3.A.1 Descriptive Statistics

Strategy Alive Dead Total
All Funds 6121 8102 14223
Fund of Funds 2158 1653 3811
Single Funds 3963 6449 10412
Long/Short Equity Hedge 1529 2024 3553
Equity Market Neutral 212 415 627
Event Driven 281 489 770
Dedicated Short Bias 16 33 49
Fixed Income Arbitrage 159 310 469
Convertible Arbitrage 64 198 262
Emerging Markets 307 323 630
Multi-Strategies 580 517 1097
Options Strategies 9 2 11
CTA-Managed Futures 497 1784 2281
Global Macro 252 344 596
Other-Undefined 57 10 67

Table 3.1: Number of funds for single risk estimation



Figure 3.1: Empirical distribution of durations (in months).

Strategy Mean Qu.(5%) Qu.(95%) Mode Alive Dead
All Funds 62, 0 11 158 23 6121 8102

Fund of Funds 61, 0 12 149 23 2158 1653
Single Funds 62, 4 11 160 35 3963 6449

Long/Short Equity Hedge 62, 1 12 154 35 1529 2024
Equity Market Neutral 54, 8 12 134 24 212 415
Event Driven 70, 4 12 184 61 281 489

Fixed Income Arbitrage 59, 1 12 144 42 159 310
Emerging Markets 61, 2 12 160 17 307 323
Multi-Strategies 53, 3 8 145 22 580 517

CTA-Managed Futures 69, 3 10 189 29 497 1784
Global Macro 51, 8 7 135 44 252 344

Table 3.2: Durations (in months) statistics and corresponding number of funds.



3.A.2 Single risk estimation : empirical results

3.A.2.1 Parametric estimation

Strategy µ σ Mode ρ κ

All Funds 4, 2762 0, 5638 35, 0 0, 0139 1, 7737
[4, 2581; 4, 2944] [0, 5538; 0, 5739]

Fund of Funds 4, 4859 0, 5637 43, 2 0, 0113 1, 7740
[4, 4469; 4, 5250] [0, 5419; 0, 5864]

Single Funds 4, 2073 0, 5615 32, 9 0, 0149 1, 7808
[4, 1866; 4, 2279] [0, 5504; 0, 5729]

Long/Short Equity Hedge 4, 2733 0, 5669 34, 6 0, 0139 1, 7639
[4, 2369; 4, 3097] [0, 5470; 0, 5876]

Equity Market Neutral 4, 0348 0, 5136 31, 6 0, 0177 1, 9470
[3, 9598; 4, 1099] [0, 4746; 0, 5558]

Event Driven 4, 3104 0, 5382 39, 0 0, 0134 1, 8579
[4, 2385; 4, 3824] [0, 5004; 0, 5790]

Fixed Income Arbitrage 4, 1287 0, 4818 37, 4 0, 0161 2, 0754
[4, 0465; 4, 2109] [0, 4399; 0, 5278]

Emerging Markets 4, 3617 0, 5499 39, 7 0, 0128 1, 8184
[4, 2727; 4, 4508] [0, 5042; 0, 5998]

Multi-Strategies 4, 2603 0, 5979 31, 0 0, 0141 1, 6725
[4, 1852; 4, 3353] [0, 5574; 0, 6413]

CTA-Managed Futures 4, 0821 0, 5834 27, 2 0, 0169 1, 7140
[4, 0390; 4, 1251] [0, 5615; 0, 6062]

Global Macro 4, 0984 0, 5575 29, 9 0, 0166 1, 7938
[4, 0103; 4, 1865] [0, 5115; 0, 6077]

Table 3.3: Single risk parametric estimation for a log-logistic specification.



3.A.2.2 Comparison between parametric and nonparametric intensities

Figure 3.2: Parametric and nonparametric intensities for all funds.



Figure 3.3: Parametric and nonparametric intensities for fund of funds.

Figure 3.4: Parametric and nonparametric intensities for single funds.



Figure 3.5: Parametric and nonparametric intensities for Long-Short Equity Hedge funds.

Figure 3.6: Parametric and nonparametric intensities for Equity Market Neutral funds.



Figure 3.7: Parametric and nonparametric intensities for Event Driven funds.

Figure 3.8: Parametric and nonparametric intensities for Fixed Income Arbitrage funds.



Figure 3.9: Parametric and nonparametric intensities for Emerging Markets funds.

Figure 3.10: Parametric and nonparametric intensities for Multi-Stategies funds.



Figure 3.11: Parametric and nonparametric intensities for CTA-Managed Futures funds.

Figure 3.12: Parametric and nonparametric intensities for Global Macro funds.



3.A.2.3 Single risk estimation with covariates

Strategy Alive Dead Total
Single Funds 1075 2487 3562
Fund of Funds 281 415 696

Table 3.4: Number of funds for a single risk analysis with dynamic covariates.

Var. 1 Var. 2 Var. 3 β1 β2 β3

Equity - - −0, 216 - -
[−0, 259;−0, 174]

ln(AUM) - - −0, 239 - -
[−0, 297;−0, 182]

Equity ln(AUM) - −0, 144 −0, 218
[−0, 176;−0, 112] [−0, 279;−0, 157]

Equity ln(AUM) Date Ref −0, 0946 −0, 2863 4, 20.10−4

[−0, 123;−0, 066] [−0, 351;−0, 221] [3, 14.10−4; 5, 26.10−4]
Returns ∆ ln(AUM) - −3, 61 −0, 716 -

[−5, 12;−2, 10] [−1, 06;−0, 367] -
Returns ∆ ln(AUM) Date Ref 1, 41.10−4 −2, 03.10−4 3, 65.10−4

[−2, 23; 13, 6] [−0, 841; 0, 841] [2, 63.10−4; 4, 65.10−4]

Table 3.5: Single risk estimation for single funds with dynamic covariates.

Var. 1 Var. 2 Var. 3 β1 β2 β3

Equity - - −0.035 - -
[−0, 057;−0, 014]

ln(AUM) - - −0, 202 - -
[−0, 263;−0, 141]

Equity ln(AUM) - −0, 015 −0, 199 -
[−0, 026;−0, 004] [−0, 263;−0, 135]

Equity ln(AUM) Date Ref 0, 0031 −0, 2948 4, 69.10−4

[−0, 003; 0, 009] [−0, 363;−0, 227] [3, 53.10−4; 5, 84.10−4]
Returns ∆ ln(AUM) - −6, 38 −0, 925 -

[−9, 26;−3, 49] [−1, 23;−0, 618] -
Returns ∆ ln(AUM) Date Ref −2, 18.10−4 −2, 06.10−4 3, 93.10−4

[−4, 13; 4.13] [−0, 770; 0, 770] [2, 77.10−4; 5, 10.10−4]

Table 3.6: Single risk estimation for fund of funds with dynamic covariates.



Figure 3.13: Nonparametric baseline intensities of nested dynamic Cox models for single risk estimation
for single funds.

Figure 3.14: Nonparametric baseline intensities of nested dynamic Cox models for single risk estimation
for fund of funds.



3.A.3 Competing risks

Figure 3.15: Histogram of Last AUM/Max AUM for all dead funds

Strategy Censored T+ T−
Single Funds 1075 1018 1469

Fund of Funds 281 215 200

Table 3.7: Resulting number of funds for each category of risk.

Single Funds
T+

Var.1 Var.2 Var.3 β1 β2 β3

Equity Ln(AUM) Date Ref 0, 0592 0, 186 5, 42.10−4

T−
Var.1 Var.2 Var.3 β1 β2 β3

Equity Ln(AUM) Date Ref −3, 61.10−3 −0, 364 3, 36.10−4

Fund of Funds
T+

Var.1 Var.2 Var.3 β1 β2 β3

Equity Ln(AUM) Date Ref −0, 115 3, 00.10−2 4, 85.10−4

T−
Var.1 Var.2 Var.3 β1 β2 β3

Equity Ln(AUM) Date Ref 0, 0175 −0, 568 4, 50.10−4

Table 3.8: Parameter estimates for a competing risks model with covariates.



Figure 3.16: Nonparametric baseline intensities of competing risks for single funds for a dynamic Cox
model (covariates : Equity, ln(AUM), Date Ref).

Figure 3.17: Nonparametric baseline intensities of competing risks for fund of funds for a dynamic
Cox model (covariates : Equity, ln(AUM), Date Ref).



3.A.4 Academic Contributions

We sum-up here the approaches of the main academic contributions on Hedge Fund lifetimes, depend-
ing on the chosen model (parametric or nonparametric approach, use of covariates, dynamic or static
covariates, etc.). The legend is the following :

• NDM : No Duration Model

• PWC : Parametric without Covariates

• NPWC : Nonparametric Without Covariates

• PSC : Parametric with Static Covariates

• PDC : Parametric with Dynamic Covariates

• SPSC : Semi-Parametric with Static Covariates

• SPDC : Semi-Parametric with Dynamic Covariates

• CR : Competing Risks

• DCM : Discrete Choice Model

NDM PWC NPWC PSC PDC SPSC SPDC CR DCM
Amin and Kat (2002)

√

Lunde et al. (1999)
√ √

Baquero et al. (2005)
√ √

Boyson (2002)
√

Fung and Hsieh (1997b)
√

Ang and Bollen (2010)
√ √

Barès et al. (2007)
√

Brown et al. (2001)
√

Gregoriou (2002)
√ √

Grecu et al. (2007)
√ √

Rouah (2005)
√ √

Liang and Park (2008)
√



3.A.5 Empirical method for missing data

Working with dynamic covariates, as soon as a fund does not provide data for a given month, it cannot
enter the estimation, as the partial likelihood procedure needs at any date the value of the covariate
for all fund in the risk set. Undisclosures may be caused by the fact that funds may forget to report at
some dates, due to exogenous reasons. More precisely, and contrary to performance which is quite well
reported, AUM may be often missing. Our correction method will then only be focused on treating
missing AUM.

We correct data in two cases. First, when AUM is explicitly provided at the beginning and at the end
of the lifetime of the fund. Then it happens that AUM is missing for isolated dates. If missing data
represent less than 33% of the total length of the track, they are replaced by the first next available
AUM. If AUM is missing at the end of the track, the data are forward-filled and replaced by the last
available AUM.

An important lack of data may also occur at the beginning of the life of the fund. As in this period
of the life of the fund AUM is particularly volatile, we only keep funds with missing data inferior to
six months.



Chapter 4

Does Lockup Increase Hedge Funds

Lifetimes?

Abstract

Hedge fund liquidity for the investor is often modelled using share restrictions such as lockup (impedi-
ment on the withdrawal of initial capital), redemption notice and redemption frequency (time of request
and time to wait before an investor gets her money back). Those variables are frequently used along
with share restrictions or managerial incentives in econometric studies in conditional duration models.
Their potential endogeneity is not tackled if not explicitly discarded without minimal justifications. It
is shown in this chapter that (i) the lockup variable is endogenous, that (ii) using redemptions variables
as instruments allows to estimate a causal effect for setting up a lockup on the survival of the fund
(larger than the duration of the lockup itself) and that (iii) this effect is in line with a “ rebound”
effect for funds complying into the lockup settlement. Such a study (identification of the endogenous
nature of the lockup and quantification of its effect), up to our knowledge, has never been published.
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4.1 Introduction

The liquidity of a Hedge Fund depends on the contractual features that specify if and how the assets of
an investor can be withdrawn from the fund. This reduced liquidity on the investor’s side is claimed to
help managers in their investment procedure: reducing the liquidity of capital withdrawal is assumed
to allow less liquid investments, and thus to access asset classes with a higher return. This liquidity
is mainly characterized by share restrictions such as lockup and redemption constraints. A lockup
specifies a period during which it is impossible for the investor to redeem its initial shares. After this
period, the investor must notify her redemption sufficiently in advance (redemption notice) before the
redemption is processed. The processing itself is possible at a given frequency (redemption frequency)
that may be days, weeks, or months. Additionally with gates, the manager may have the possibility
to discretionary limit the redemption to a certain proportion (or to block the process in an extreme
situation).

As discussed in Chapter 3, Hedge Funds report voluntarily in databases and two reasons may explain
that a fund exits a database. In this chapter we will be interested in the exit caused by poor perfor-
mances. In order to prevent huge downfalls in the amount of asset under management, the manager
has the possibility to set a lockup on her fund. We argue here that the nature of this lockup is endoge-
nous: the manager seeks an ex-ante protection to prevent the fund from massive capital withdrawals
and then from liquidation. In practice, the manager decides herself whether she sets a lockup or not.

This depends on her level of own-confidence, to prevent her fund from failure and thus to increase its
survival probability. The decision of setting a lockup is not neutral, as it partly reveals manager’s own
confidence. It is also a restriction for the investors, resulting in a reduced liquidity. Empirically, it is
however often viewed as an advantage by the investor, as it prevents other investors to get their money
back and then protects the fund from failure in bad times. Then, setting a lockup is not compulsory
considered as a drawback from a commercial perspective.

Information being limited concerning Hedge Funds, the true ability of the manager cannot be observed.
The lock-up may then be viewed as a treatment into which the manager self-selects. The question
that arises naturally is: what is the effective causal effect of this binary treatment variable on the
duration of a fund in a database? Such a question is, up to our knowledge, not asked in the literature.
Our approach is therefore different from most academic papers that are often more concerned by the
inclusion of managerial incentives, viewed as exogenous proxies for manager’s ability in conditional
survival models.

Section 4.2 states the problem and links it to the common stylized facts of Hedge Funds analysis. We
also define precisely the objects of our study and review the related literature. Section 4.3 explores
causal effects and presents how to deal with endogeneity in this precise case. Section 4.4 tests this
framework on Hedge Funds data to estimate the causal effect in terms of lifetimes of a lockup. We
find promising and coherent result accounting for a treatment effect of lockup settlement.



4.2 Data and definition

4.2.1 Hedge Funds lifetimes

We use here the same database as the one presented in Chapter 3, that is the TASS database of June
2009, with data at the end of May 2009, with the same features. The lifetime of a fund is again
computed as the difference in months between the death or current date and the initial date as in
Section 3.2, with the same assumptions. Censorship and durations are again assumed independent.
If not, we could not identify the law of the observed durations. This seems a coherent hypothesis in
our context, since censorship occurs through the current observation date.

4.2.2 Share restrictions

Lockup and redemption periods are share restrictions. They are sometimes aggregated in some studies
(Agarwal et al. (2009)), but we will explicitly separate them in our analysis (as in Ang and Bollen
(2010) who distinguish lockup from notice periods). An investment then obeys to the following process.
After an initial investment, in presence of a lockup, money is blocked for a specified amount of time
(typically one year). During this period, the investor can’t go out of the fund, regardless of the per-
formances of the fund. This feature is negotiated at inception of the contract between the investor
and the fund manager. This is particularly adapted to young funds with short-track records and
uncertainty on the manager’s skills.

After this period (if there is any), when the investor decides to redeem her shares, she has to do
with a redemption notice which is the contractually set period of time before the fund processes to
redemption. This does not mean that the investor receives her money after that: this is the case
when the redemption frequency is attained. It may be a time or a date (quarterly, annually) at which
redemption is effective. For example, if redemption is annually in December, and processed, say, in
January, the investor has to wait nearly a year before getting her money back.

Intuitively, the longer these periods, the greater the illiquidity of the fund. In practice, this illiquidity
is associated to a higher flexibility for the manager and with superior performance (Agarwal et al.
(2009)). As it allows the manager to make illiquid bets on a longer term, those instruments are as-
sumed to provide higher returns. Investors can then take benefit from those share restrictions. Aragon
(2007) estimates that the reward for such restrictions is around 4 − 7% a year, and this is the price
for the so-called illiquidity premium. The positive relation between lockup and hedge fund returns
has been also underlined by Ackermann et al. (1998) and Liang (1999). Ding et al. (2009) also tries
to evaluate the empirical links between returns and capital flows taking into account the redemption
restrictions.

However, one may think that such restrictions have also a cost. This cost may be interpreted as exit
fees. Such a cost has been estimated to be around 1.5% of the initial investment by Ang and Bollen
(2010) for a two-years lock-up and 3-months notice period. This cost is then inferior to the average
benefit of restrictions. However, this changes dramatically when the manager can proceed to gates,
that is to say the possibility to stop totally or partially any AUM withdrawal (in this case the cost
can go up to 10 or 15 % of the initial investment).

Our aim is then to consider lockup as a static, endogenous variable, in the framework of duration



models. Lerner and Schoar (2009) have already tried to explore whether a lockup is part of an op-
timal incentive contract for fund managers. Agarwal et al. (2009) argues that managerial incentives,
share restrictions, and fund features chosen by the manager, are probably exogenous and discards
endogeneity of those variables in the analysis of performance. This could be subject of discussion as
even managerial incentives could be viewed as being endogenous. Skilled managers with a long-term
view will set high incentive fees as a price to the access to their fund; short-term, low-skilled managers
may also be tempted to set high fees as their time-horizon (and their anticipated survival) is short,
then they could try to accumulate as much money as possible in a short time. We focus however on
the lockup and follow then the opposite approach, considering this variable as being deeply endogenous.

We are then close to the approach of Hombert and Thesmar (2009) which shows that arbitrageurs with
stable funding (proxied by share restrictions for Hedge Funds) can encounter some low performance
periods without fearing fund liquidation, and will even outperform other funds in the future. The
funds performing poorly on the short-term can still maintain their (potentially profitable) long-term
investments. This is an argument for a treatment effect of lockup that protects initial investment
and decreases the probability to fail. However, such an endogeneization of the lockup variable is only
possible when there is no overwriting of this variable in databases through time (as it is static and
that data providers do not keep data of historic share restrictions). Liang (1999) and Aragon (2007)
have shown that the empirical portion of funds modifying a posteriori restriction characteristics is
really reduced (from 1% to 10%) but the main modifications on the lockup variable are made on its
duration, not on its nature (0 versus 1).

4.3 Duration models and causal effects

We will work in a single risk framework and the only risk we are concerned with is the risk of exit
from the database because of failure (including merging, liquidation, etc.). The mathematics needed
for duration analysis have been used in Chapter 3 and are exposed in Appendix A.3. But such models
are conditional and only describe the instantaneous probability for funds to fail. To hold they assume
that the covariates are exogenous, which is a drawback in our context. Other models are then needed
to provide a causal interpretation of the effect of those variables.

4.3.1 Causal effects using instrumental variables

The treatment effect literature aims at estimating the causal effect of a treatment variable D (here
lockup) on an outcome of interest Y (duration of the lifetime of the fund). The scope of such studies
ranges from medical treatment to social policies evaluation. What sophisticates the analysis is of course
when the assignment of the treatment variable is correlated to the outcome and when the agent under
treatment may self-select in the treatment program, potentially anticipating the outcome. We face this
situation in our framework since anticipating a short lifetime Y of her fund, the manager self-decides
to set a lock-up D to protect the fund from massive capital withdrawals. We will note D = 0 if there’s
no lock-up, D = 1 if there is one. Of course, we cannot identify any treatment or lockup effect by
estimating a quantity such as E[Y |D = 1]− E[Y |D = 0] since the assignment of D strongly depends
on anticipated Y .



4.3.1.1 Counterfactual outcomes and treatment effects

We suppose that for a given individual i, variable Y has two potential outcomes Y 1
i and Y 0

i under the
two potential values of the variable D. As we can observe only a given outcome at a time (D = 0 or
D = 1) the two are considered as being counterfactual. We can only observe Yi = DiY

1
i +(1−Di)Y 0

i .
The individual-level causal effect is then equal to δi = Y 1

i − Y 0
i but cannot be observed as either one

of the Y 1,0
i does not exist. We must switch to the population level and estimate E[δ] = E[Y 1]−E[Y 0].

The literature commonly writes :

Y = µ0 +D(µ1 − µ0) + {v0 +D(v1 − v0)}

with E[δ] = µ1 − µ0, µi = E[Y i] and vi = Y i − E[Y i].

The seminal idea of Heckman and Robb (1986) was to introduce observable variables to explain the
treatment selection D and break the dependence between D and the error term. However, when indi-
viduals anticipate the outcome Y , they self-select into D, and we face selection on the unobservables.
This is the main reason that explain that the usual regression:

Y = α+ δD + ε

will lead to severe biases, as D is known to be correlated to ε since D is self-selected. In this respect,
several treatment effects have been defined. First, the Average Treatment Effect (henceforth ATE)
is defined as ATE = E[δ] = E[Y 1] − E[Y 0]. Second, the Average Treatment Effect on the Treated
(henceforth ATT) is defined through ATT = E[δ|D = 1] and is the mean effect on the population
that has chosen to follow the treatment. Conversely the Average Treatment Effect on the Controls
(ATC) writes ATC = E[δ|D = 0]. ATE is the hypothetical difference of the two outcomes if one
could observe a random individual (in the total population) in the two universes (treatment and no
treatment). This is the more general effect that we can conceive, and as other effects will be developed,
they will correspond to more and more “local” views. ATT is the same quantity but for a population
of individuals that are in the group with D = 1.

The first approach in order to evaluate the causal effect of the causal variable D on the outcome
of interest Y , is to condition on some variables in order to block all the potential causal effects of
other perturbating variables. This includes techniques known as matching, weighting, regression or
stratification. The second approach is to use an instrumental variable (IV). As explained before the
IV W is chosen to be related with D, with an effect on Y but only through D. The causal effect of D
on Y is evaluated through the relative response in Y related to changes in D following an exogenous
variation of W . The traditional IV estimator is for an instrument in the scalar case W :

δ̂IV = Cov(W,Y )/Cov(W,D).

4.3.1.2 The framework of Angrist and Imbens

The appropriate framework for a causal analysis in our context is developed in Angrist and Imbens
(1994). They show how under suitable assumptions, the IV estimator may be interpreted as a causal
effect, but only for a limited subset of individuals, called the compliers which constitutes however an
unindentifiable subpopulation. In this situation, the causal effect estimated through the IV estimator
is the LATE (Local Average Treatment Effect, called local as it only applies for a subgroup of the



population). The LATE may be considered as the average treatment effect for the individuals where
treatment incitation is driven by monotonous shifts in an exogenous instrument which satisfies some
specific conditions which rely on the potential outcomes that are only indexed by the treatment. The
first technical assumption is of course that the instrument W is a valid one :

Assumption A0 : Y = βD + U with cov(D,W ) 6= 0 and cov(D,U) = 0.

Assumption A1 : W is a random variable such that for all value w of the support of W , and all
individual i, the vector (Yi(0), Yi(1), Di(w)) is jointly independent of Wi. Moreover, it is required that
E[Di|Wi = w] is a non-degenerate function of w.

We will be able to check the second part of Assumption A0, but it will not be possible to test its first
part as the random assignment of Zi will not ensure this (and this part of the assumption is not itself
sufficient to estimate any causal effect).

Assumption A2 : For all individual i and w1, w2 in the support of W , we have either Di(w1) ≤
Di(w2) or Di(w1) ≥ Di(w2).

Assumption A2 ensures that the instrument influences the selection in a monotonic way. It allows
that the treatment effect of those who move in the treatment is not reduced by an opposite effect
induced by a potential existence of a subpopulation that moves out of the treatment, following a shift
in W . Unfortunately, this assumption is again untestable. This model has been also developed by
Angrist et al. (1996) (who split and refine the assumptions of Angrist and Imbens (1994)): and in the
case of a binary instrument they describe the population in four subgroups depending on the indi-
vidual reactions to shifts in the instruments. In our framework, their assumptions translate as follows :

Assumption A’1 : The potential lifetimes Y 0,1
i for each fund i are unrelated to the treatment status

of the other funds (SUTVA - Stable Unit Assumption).

Assumption A’2 : The assignment of the instrument W is random (Random Assignment).

Assumption A’3 : Whatever the value of the instrument, the outcome first depends on D i.e. for
w 6= w′ : Y (D,w) = Y (D,w′) (Exclusion Restriction).

Assumption A’4 : The average causal effect of D on Y is non-zero.

Assumption A’5 : For each individual, D is monotonically increasing as a function ofW (Monotonic-
ity).

We give here a more simple version of the original set of assumptions which are technically detailed
in Angrist et al. (1996). Under A0;A′1 − A′5 the LATE computed as the IV estimator has a causal
interpretation and the population may be described in the following way. The “never takers” never
self-select into the treatment program whatever the value of the instrument, on the contrary to the
“always-takers” that always take the treatment. The “defiers” are reluctant to take the treatment and
switch to the non-treatment situation with W increasing. The last category is made of the “compliers”
who switch to treatment participation with an increasing value of the instrument. Assumption A′5



excludes “defiers” and the two first categories are characterized by a causal effect which is equal to
zero. A′4 ensures that the overall population has a non-zero proportion of compliers. The only limita-
tion is that the individuals that are members of this category are not identifiable. Then the LATE is
only the treatment effect for compliers but not for the whole population, nor for an observed part of it.

With a binary instrument, the LATE and the ATT match only if we assume that the causal effect
is the same for every individual. When this is not the case, we will not be able to identify the ATT
unless we have a continuous instrument W such as E[D = 1|W ] covers all the values between 0 and
1. For this see Heckman and Vytlacil (2005) which completely generalizes and unifies the notions of
treatment effects. We will check in Section 4.4.3 the validity of our chosen instrument and of the
previous assumptions.

4.3.2 Estimation with a counting process approach

We adapt then the approach developed in Chapter 2 to estimate a causal effect in the framework of
duration models. Y = τ is estimated as a function Y = φ(U,D) with the help of an instrument but
using an intensity approach. φ is expressed as the solution of Equation 2.12; the causal interpretation
comes in a second step.

4.3.2.1 Integral equation for φ

Equation 2.12 may be re-expressed in this case through Equations 2.10 or 2.14. The integral equation
of interest is then:

∫
d

∫ φ(u,d)

t=0

λτ (t|D = d,W )g(d|τ ≥ t,W )dddt = u. (4.1)

λτ (t|Z = z,W ) is the conditional intensity of the process relatively to the Z = D and W variables,
and g(z|τ ≥ t,W ) is the density of the treatment variable Z = D conditionally to W and to the fact
that the event of interest has not yet occurred (the fund is still alive and reporting in the database).
where λτ (t|D = d,W ) is the conditional intensity of the process relatively to the D and W variables,
and g(d|τ ≥ t,W ) is the density of the treatment variable D conditionally to W and to the fact that
the event of interest has not yet occurred (the fund is still alive and reporting in the database).

4.3.2.2 Application to causal effect estimation

In our case, φ(u, d) = α(u) + β(u)d as the D variable will be the lockup (binary, 0/1). Then the
integral over the support of Z must be understood as a finite sum from 0 to 1. λτ (t|D = d,W ) may
be estimated with a Cox model and then accounts for censorship:

λτ (t|D = d,W ) = λ0(t)exp(βDD + betaWW ).

We assume that g(d|T ≥ t,W ) = g(d|W ). Such an assumption will be plausible as soon as W and D
are static variables, fixed at inception of the fund. We must notice that at a given date, a database
is a picture taken at this date of the state of the industry. We cannot observe if the lockup status of
the fund has been modified across time. No data on the evolution of this variable is available, but as
expressed before p.108, this in practice variable is not much subject to evolution.



For a fixed W = w, g(d|W ) is a two-valued vector estimated as :

ĝ(D|W = w) = (ĝ(0|W = w), ĝ(1|W = w)) =
(∑N

i=1 1(Di=0,Wi=w)∑N
i=1 1(Wi=w)

,

∑N
i=1 1(Di=1,Wi=w)∑N

i=1 1(Wi=w)

)
.

For a fixed u, the left hand side of Equation (4.1) becomes:

Λ0(α(u))exp(β̂WW )ĝ(0|W ) + Λ0(α(u) + β(u))exp(β̂D + β̂WW )ĝ(1|W )

where Λ0(τ) =
∫ τ

0
λ0(t)dt.

For a given u we estimate (α(u), β(u)) ∈ R2 as:

argmin(α(u),β(u))

N∑
i=1

[
(Λ̂0(α(u))exp(β̂Wwi)ĝ(0|wi) + Λ̂0(α(u) + β(u))exp(β̂D + β̂Wwi)ĝ(1|wi)− u)2

]
.

Then LATE is simply:

δφ = E[φ(U, 1)− φ(U, 0)] = E[β(u)] (4.2)

which will be easily estimated as we have assumed that U ∼ Exp(1).

4.4 Empirical Study

4.4.1 Database and Instruments

A full description of the current database is already provided in Chapter 3. Funds with a lockup
represent 17.49% of the database. This figure is of 20.02% for single funds and 10.55% for fund of
funds. Corresponding figures are displayed in Table 4.1. The mean lockup duration is around one
year: 12.29 months for single funds, 11.91 months for funds of funds, and 12.23 months for all funds.
However, the present study cannot be performed on this whole dataset. First, we will only consider
funds that disclose the several quantities: inception date, currency code, performance start/end date,
redemption frequency and lockup period. In addition, we also present results also by separating funds
along with their declared investment style and consider three categories: single funds, funds of funds
and all funds. Funds are considered as dead for the database of 05/31/2009 if:

• funds are in the graveyard;

• funds are “alive” but do not have reported any figure since 01/31/2009; or funds are “alive” but
do not have published at the 05/31/2009 but are categorized explicitly as “no longer reporting”,
“liquidated”, or “unable to contact fund”.

We explicitly exclude backfillers and focus on funds in USD currency. This will allow us to get similar
funds (without redundant shares in other currencies, potential copies of the main share) with homoge-
nous characteristics. Our dataset is reduced as we only consider funds that have no missing data in
their returns and AUM1. For our analysis, we will take as instrument the redemption frequency2.

1A correction is applied as in Chapter 3 since the AUM track is backfilled in case of missing data. We apply the

method if less than the six first months months of data, and less than 1/3 of the total lifetime of the fund are missing.

Else the fund is discarded.
2This variable is estimated in days as the maximal amount of time to wait before in-process redemption is effective.

For instance, if the redemption is annually, then this variable will be equal to 365 days.



We must only consider as dead and uncensored, funds leaving the database because of bad perfor-
mance. Exiting good-performers are then taken as censored for a competing reason. As we wish to
model lockup as a treatment against liquidation, we have to distinguish among funds those whose
future survival is in danger. As we cannot always identify the reason of the exit, we must set a dis-
cretionary criterion, based here on the status of the fund in the database and/or its level of AUM
at the time of exit. For all the other uncensored (i.e. dead) funds, we consider that the funds exit
because of bad performance, when their AUM at the time of exit is below 200 millions of US dollars
or that this value is less than 75% of the maximum value reached by the total AUM. In the oppo-
site case (high AUM above 200 millions, and more than 75% of the maximum value), we consider
that the exit of the fund is not caused by bad performance, but because it has reached a sufficient
capacity. This is motivated by the observation that the distribution of the variable of last reported
AUM divided by maximum AUM is flat with a pronounced peak at one, as suggested by Figure 3.15.
Those funds are then set as censored for an other reason, but are of course still included in the risk set.

Our sample is made of 4131 funds. For this sample, the proportion of funds (see Table 4.2) with a
lockup is slightly higher than for the global population but yet of the same order: 33.62% for single
funds, 26.84% for fund of funds and 32.51% for all funds. The mean lockup duration is again around 12
months (respectively 12.64, 12.28 and 12.59 months). Such figures are very similar to those obtained
in Aragon (2007) or Hombert and Thesmar (2009). A description of the lockup periods is given in
Table 4.3: lockup of 6 and 12 months are standard and constitutes the major part of the funds with
a lockup.

4.4.2 Estimation of causal effect

4.4.2.1 “Naive” estimation

Difference of mean durations

If we compute the difference between the mean duration of the funds with a lockup versus funds
without lockup, we estimate a quantity which has nothing to do with any causal effect. We call it here
δNAIV E = E[Y |D = 1]− E[Y |D = 0]. We however compute this quantity as a reference to illustrate
the benefits of the treatment approach.

For single funds, we get E[Y |D = 1] = 72.37 months, E[Y |D = 0] = 81.93 months and δNAIV E =
−9.56 months. For funds of funds E[Y |D = 1] = 74.71 months and E[Y |D = 0] = 81.65 months,
consequently: δNAIV E = −6.94 months. We obtain for the whole sample E[Y |D = 1] = 72.69 months
and E[Y |D = 0] = 81.88 months with a resulting δNAIV E = −9.19 months.

Relying on this to build a causal analysis would lead to conclude that lockup is ineffective in extending
a fund’s life. This is because the counterfactual alternative is not observed for each individual: the
two populations (funds with and without lockup) are heterogenous in their nature and in their antic-
ipations. The selection bias is then so strong that the conditional observation (negative difference in
duration between the two populations) is the opposite of what a treatment effect should be.

Using a hazard intensity

In fact, using a more sophisticated model including a hazard intensity would lead to the same conclu-
sion, as it remains a conditional models with exogeneity assumptions on the variables. For instance,



we could set a Cox model with λ(t) = λ0(t)exp(βDD) and λ0 following a specified density. Doing this
we would have then the duration τ which writes:

τ = φCox(U,D) = Λ−1
0

( U

exp(βDD)

)
where Λ0 is the cumulative log-logistic hazard. The pseudo-causal effect would be:

δCox = EU [Λ−1
0

( U

exp(βD)

)
− Λ−1

0 (U)].

With a log-logistic hazard we would get for instance:

Λ0(t) = log(1 + (ρt)κ) → Λ−1
0 (u) =

1
ρ

(
exp(u)− 1

) 1
κ

.

With U ∼ Exp(1), we get the final expression:

δCox =
∫ ∞

0

e−u

ρ

[(eβD

e−u
− 1
) 1

κ −
( 1
e−u

− 1
) 1

κ
]
du.

We see directly that this would lead to similar results than in the previous paragraph. Empirically,
conditionally on the lockup variable, the default intensities are higher for funds with a lockup. As we
work with a static covariate D with a conditional model, and that the mean duration conditional on D
is shifted downwards with D = 1, we would get a positive coefficient βD. The wrong reading would be
that setting up a lockup decreases the lifetime of a fund. Such a causal interpretation is not the good
one. Lockup does not cause the shift in intensity, it only underlines that managers of funds with
anticipations, endogenously choose to set a lock-up on the fund. Therefore, such previous procedures
do not take into account the potential endogeneity of covariates, and are improper in producing causal
statements.

4.4.2.2 Estimation with IV (2SLS)

We follow here the approach described in Section 4.3.1.2. We choose as the outcome the duration of
the fund in the database (variable Y ), as explicative variable the binary lockup D (0/1). Our chosen
instrument W is the redemption frequency. The causal effect δLATE will be given as the IV estimator
in this context, as the result of the following two-stage least squares procedure:{

Y = γ0 + δLATED + U

D = γ1 + γ2W + V

Results are given in Table 4.4. This means that the LATE (the average treatment effect on the
compliers) is equal to 44.53 months for single funds, 66.02 months for fund of funds and 48.91 months
for all funds. Those quantities are far different from the previous δNAIV E and all are statistically
significant. We will explore in Section 4.4.3 whether we can consider this value as an average treatment
on the treated. Unfortunately, this method has a drawback as it cannot take account of censorship
and considers durations as random variables and not as the mark for the jump for an underlying
stochastic process. This is the precise aim of the next section, in order to precise those results.

4.4.2.3 Estimation with a counting process approach

We use here the approach described in Section 4.3.2 which both considers the endogeneity and the
censorship problem. A practical limitation is that after a given threshold for u, the estimation of β(u)



has no sense3. We must set a maximum value Mu for u, that we choose here as being slightly superior
to the (perimetrically estimated) cumulated hazard Λ̂0(Mτ ) where Mτ is the maximal duration of
all funds of the sample (388 months). Then we only compute β(u) for u ∈ [0; 3]. We then obtain
the estimation of β(u) in Figure 4.1 for single and funds of funds, and Figure 4.1 for all funds. The
estimated causal effect δφ = E[φ(1, U)− φ(0, U)] is computed through:

δφ =

∫Mu

0
β(u)e−u∫Mu

0
e−udu

.

as we cannot observe β(u) for an infinite set of u. Then δφ may be seen as a weighted average of
computed β(u) values for plausible values of u. Finally, we obtain that 39.79 months for single funds,
44.52 months for funds of funds, and δφ = 40.38 months for all funds. Those figures are close to the
ones obtained with the 2SLS model, but are slightly inferior and less dispersed. We however recover
that the LATE of lockup for Hedge Funds is around 40 months.

4.4.3 Comments

We have seen in Section 4.3.1.2 that several assumptions have to be checked in order to provide a
causal interpretation for the estimators using instrumental variables. Even if main assumptions cannot
be tested, we provide for some of them a discussion and test empirically the others.

Our chosen instruments W (redemption frequency) seem to satisfy the conditions required for instru-
mental variables as they are correlated with the explicative variable (lockup D) and not with the
second-step estimated residual Û . The relative quantities are given in Table 4.5. Consequently, as-
sumption A0 seems to be plausible as the instrument is well correlated with the explanatory variable
but not with the estimated residual4.

Turning to the second part of assumption A1, we provide in Table 4.6 a crude estimation of the func-
tion w 7→ E[D|W = w] (since W has a discrete support). We also provide card{w|W = w} for each
w in the support of W to assess the relevance of those quantities. w 7→ E[D|W = w] is a non-trivial
function. Even if A′5 cannot be tested, w 7→ E[D|W = w] is however approximately monotonously
increasing in w which is a positive (yet not sufficient) argument to assume monotonicity (if we leave
aside the size problem of some samples that are too small to allow us to conclude).

Concerning other untestable assumptions such as A′1, A′3 and A′4, we can only make some comments.
A′1 seems to be quite realistic as it assumes that the lifetime of a given fund is not influenced by the
presence of a lockup on other funds. This sounds not odd as even if the Hedge Fund industry is a
competitive universe, we may think that links in survivance or disappearance between funds may be
driven by systematic crisis, frauds, or by economic/global factors, rather than by individual status or
features. Then, setting a lockup on a fund is likely to have few influence on other funds. A′3 is again
plausible as it is more credible to think that the decision of capital withdrawal for an investor relies
more on the time during which her money is blocked, rather than by the minimal time to wait before

3For u being large, the upper bound of the inner integral has to be large itself. But beyond the empirical support

of the durations of the sample, λ(|Z, W ) becomes null and this the parametric estimation of the upper bound of the

integral makes no sense.
4Further work could be to adapt a validity test of the instruments. A Sargan test could be implemented with the

2SLS model but no test for our procedure is available at this point.



getting it back when possible. An other argument for this is that the magnitude of redemption notice
durations are often days or months, whereas lockup durations are often a year or two.

4.5 Conclusion

When studying hedge funds, most of the models developed by the literature assume exogenous vari-
ables, in particular for the analysis of their lifetimes and survival. In this chapter, we provide strong
evidence for the contrary, i.e. that some of them (essentially share restrictions) must be conceived as
being endogenous.

Furthermore, lockup must be considered as a treatment for funds whose manager, anticipating a short
lifetime, self-selects this variable. The estimated treatment effect is a Local Average Treatment Effect
(LATE). It can be interpreted under mild assumptions as an Average Treatment on the Treated since
the expectation of the treatment variable conditional to the instrument, covers the range of probabil-
ities towards its lower bound.

A simple 2SLS method with redemption frequency taken as an instrument gives satisfying results,
and helps in discarding any unappropriate causal statement coming from conditional hazard intensity
modeling. We find then an ideal framework to illustrate the developments of Chapter 2, which allows
to include censorship. We obtained more homogenous and more robust results than with classical
2SLS. The short conclusion is that a lockup extends the life of a compliant fund up to 40 months. The
magnitude of this effect is clearly different from the usual lockup period (12 months) and is in favor
of a “rebound” effect for funds setting a lockup, thus being in line with the approach of Hombert and
Thesmar (2009) who find that funds with a stable funding can experiment a greater mean-reversion
in its returns. Up to our knowledge, such a conclusion has never been reached before in the field of
Hedge Funds survival analysis.



4.6 Tables and Figures

4.6.1 Descriptive Statistics

Category Alive, with lck. Alive, without lck. Dead, with lck. Dead, without lck.
All 943 5178 1544 6558
Single 780 3183 1305 5144
Fund of Funds 163 1995 239 1414

Table 4.1: Number of funds of the whole database with or without lockup.

Category Alive, with lck. Alive, without lck. Dead, with lck. Dead, without lck.
All 910 1646 433 1142
Single 766 1299 395 993
Fund of Funds 144 347 38 149

Table 4.2: Number of funds of the sample under study with or without lockup.

Period (months) Number of funds
1 13
2 2
3 45
4 5
5 1
6 113
9 5
11 1
12 1048
14 1
18 4
24 61
25 6
27 1
30 6
36 23
>36 7

Table 4.3: Lockup periods in months.



4.6.2 2SLS estimation of LATE

Category LATE (months) C.I. at 95%
All funds 48.91 [36.92; 60.92]
Single funds 44.53 [31.98; 57.09]
Funds of funds 66.02 [33.23; 98.80]

Table 4.4: Estimated 2SLS LATE with corrected 95% confidence interval.

4.6.3 Nonparametric estimation of β(u)

Figure 4.1: Nonparametric estimation of β(u) (in months) for single and funds of funds.



Figure 4.2: Nonparametric estimation of β(u) (in months) for all funds.

4.6.4 Test of causal assumptions

Category corr(D,W ) corr(Û ,W )
All funds 31.92% −2.59× 10−15

Single funds 32.49% 5.10× 10−16

Funds of funds 32.62% 2.24× 10−16

Table 4.5: Estimated correlations between variables and estimated residuals.

w (days) card{w|W = w} E[D|W = w]
1 43 4.65 %
7 64 1.56 %
15 16 18.75 %
30 1961 15.04 %
120 1676 48.87 %
180 149 59.06 %
365 216 60.19 %
720 2 100 %
1095 4 75 %

Table 4.6: Description of W and of function w 7→ E[D|W = w].





Chapter 5

Portfolio Allocation as an Inverse

Problem

joint work with Anna Simoni1.

Abstract

Finding appropriate methods to allocate investor’s wealth in various securities is a topic of great
importance, still subject of active academic research. For equity portfolio allocation, Markowitz defined
a framework that using moments of the return distribution of the portfolio assets. This leads however
to a numerical inconsistency when the sample covariance matrix of asset returns has to be inverted.
This fact is well known and is mainly caused by the magnitude of its lowest eigenvalues. Arguments
used in the empirical literature to compare allocation methods are based most-of-the-time on out-of-
sample backtests rather than on mathematical arguments. Therefore, the aim of this chapter is (i) to
write the allocation problem as an inverse one; (ii) to identify which allocation procedures are relevant
from the inverse problem theory; (iii) to draw the connections between methods such as shrinkage and
Black-Litterman and (iv) to examine whether the usually invoked Bayesian justification is relevant.
Our focus is mainly theoretical but up to our knowledge, some of our findings have not been documented
yet in the literature.

1This chapter is adapted from a preliminary work with Anna Simoni for forthcoming papers.
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5.1 Introduction

5.1.1 Motivations

Portfolio allocation has always been a topic of great interest for practitioners as for academics. The
objective is to find a technique that allows to get satisfying performances, while maintaining a low
level of risk. This view is however too restrictive: some other criterions have to be taken into account
: this sophisticates the analysis. Allocation is not confined to portfolio optimization as the necessity
to find new financial indices has also arisen. The traditional financial theory has from long defined the
efficient portfolio from being the portfolio weighted with the observed market-capitalizations. Con-
sequently, main indexes on the markets are capital-weighted. Recent works preconize to use other
approaches in order to build more efficient indices.

The advantage of capital-weighted indices is that they are simple, representative and easy to build,
with a low turnover. However, they are (by definition) concentrated in the biggest stocks, which
implies an insufficient diversification in terms of risk. Discussions on their efficiency have appeared
and alternative ways to traditional index have been proposed (equally-weighted indices, fundamental
indexation, etc.). We face then the usual dichotomy of portfolio allocation, balancing between perfor-
mance and risk diversification.

In a nutshell, the aim of the portfolio manager (or alternatively the investor) is to rebalance positions
to build optimal portfolios. But the traditional mean-variance optimization, derived from the theory
of Markowitz, often leads to a numerical instability as the inversion of the sample covariance matrix
makes any small change in the expected return vector dramatically amplified in the resulting vector
of portfolio weights. Hence, the resulting portfolio allocation appears unstable through time. Let N
denote the number of assets in the portfolio and T the number of observations. When N is larger than
T , the sample covariance matrix is not even invertible. When N is less than T , but still very large,
the sample covariance matrix is invertible but numerically ill-conditioned, as some of its eigenvalues
are very small.

The Markowitz problem can be stated as an inverse one. It becomes ill-posed after that the true
covariance matrix and expected return vector are replaced by their sample counterpart. A unique
solution to the portfolio allocation problem still exists, but it is highly sensitive to estimation errors
in the expected return vector. Recovering the optimal portfolio allocation is one of the many applied
problems that require to inverse a sample covariance matrix with a dimension that is large compared
to the sample size. The problem of regularizing the inverse of the sample covariance matrix is then
more general than the example we consider in this chapter: at the best of our knowledge, many avail-
able regularization methods have not been applied to the Markowitz problem.

The aim of this chapter is to explicit the inverse nature of the allocation problem and also to identify
which practical allocation procedures may be considered as providing a regularizing effect. Finally, we
wish to draw connections between the chosen methods and examine whether they are relevant from
a Bayesian perspective. Section 2 writes the portfolio allocation puzzle in mathematical terms, and
introduces the problems arising with the sample covariance matrix inversion. We try to make a review
of the most important allocation procedures used by practitioners, and to determine those which are
relevant for our analysis. It appears particularly that two kind of procedures may be identified as



having a regularizing action: the shrinkage method (Section 3) and the Black-Litterman approach
(Section 4). We try to highlight the action of each method, to draw the respective mathematical links
between them, and to interpret each of them from a deriving Bayesian setting. Section 5 concludes.

5.1.2 Notations

We consider a number N of risky assets, indexed by i = 1, . . . , n. Wt denotes the wealth of the investor
at time t, i.e. the amount of money to be invested at time t in the risk-free and in the risky assets. In
the portfolio there is a quantity a0 of risk-free asset; this asset pays the risk-free rate r0,t at time t+1
that is supposed to be known at time t. The components of the n-dimensional vector a = (a1, . . . , an)′

denote the quantities of risky assets in the portfolio. The price of the i-th risky asset at time t is
denoted by pi

t and the corresponding return, at time t+ 1, by ri
t+1. Then ri

t+1 = (pi
t+1 − pi

t)/(p
i
t).

Moreover, we use the notation pt = (p1
t , . . . , p

n
t )′ and rt+1 = (r1t+1, . . . , r

n
t+1)

′ for the vectors of prices
and returns of risky assets. The capitalization of the portfolio in the i-th asset is a∗i = pi

tai and the
corresponding portfolio weight is denoted with wi = a∗iPn

j=1 a∗i
.

The vector of price ratios yt+1 = (y1
t+1, . . . , y

n
t+1)

′ (where yi
t+1 = pi

t+1/p
i
t) is a random variable at

time t with mean and variance µ̃ and Ω, respectively. Hence, µ̃ is an n× 1 vector and Ω is an n× n

matrix that are fixed moments, thus constant over time. Given that rt is known at t, it turns out
that Ω is the conditional covariance matrix of the asset excess returns. The vector of expected excess
return µ is defined as µ = µ̃ − (1 + r0,t)e, where e denotes the n × 1 vector of ones. The market
capitalization in asset i is given by ai

M and the market weight of the i-th risky asset is given by wi
M ,

with wi
M = ai

MPn
j=1 aj

M

, i = 1, . . . , n and wM = (w1
M , . . . , wn

M ).

When the risk-free rate is the same for each date, we use the notation r0. RM and σ2
M are the expected

return and the variance, respectively, of the market portfolio, i.e. of the chosen benchmark (which is
usually a proxy for an aggregated market behavior and may be an index like S&P, CAC, DAX, FTSE,
etc.). The risk-aversion of the market will be denoted by A := RB−r0

σ2
B

.

5.2 Portfolio allocation: instability, regularization

5.2.1 Mean-variance allocation

Starting with an universe of assets, an investor wants to select the optimal weights of each asset in a
portfolio trying to control its expected performance and its expected level of risk. In this section, we
briefly restate the initial modeling and its limitations.

5.2.1.1 The Markowitz framework

In the usual framework initially set up by Markowitz (1952), an investor has to maximize her expected
level of utility, measured in terms of expected wealth at a given horizon, under an accepted maximum
level of risk. The wealth of the investor at time t+1, as a function of the quantities invested in the risk-
free and risky assets at the previous date, is Wt+1(a0, a) = Wt(1 +Rt) + a′diag(pt)[yt+1− (1 + r0,t)e].
The budget constraint implies that Wt(a0, a) = a0 + a′diag(pt).



With a mean-variance optimization objective in mind, the investor’s objective may resume (see
Gourieroux and Jasiak (2001)) to the choice of a level of risk v and then to the constrained max-
imization problem:

max
a
Et[Wt+1(a0, a)] such that Vt[Wt+1(a0, a)] = v

where Et and Vt denote respectively the conditional expectation and variance given the information
set at t. The Lagrangian writes: Lt = Et[Wt+1(a0, a)] − λ

2Vt[Wt+1(a0, a)]. In order to solve this
problem, we only need to know the first two conditional moments Et[yt] = µ̃ and Vt[yt] = Ω. The
first order condition leads to: Ωdiag(pt)a = 1

λ [µ̃ − (1 + r0,t)e] where λ may be determined through
the constraint on the variance (i.e. the level of risk v). The inclusion of the budget constraint:
a0 = Wt(a0, a) − a∗

′
diag(pt) defines the allocation in the risk-free asset. λ is then also a proxy for

the risk-aversion of the investor (as when λ → ∞, the norm of the vector of allocation in quantity
vanishes). Since the prices pt are observable, we will simplify the notation of the problem by writing
a∗ := diag(pt)a. Alternatively, this can also be simplified by assuming that we normalize to unitary
prices. Hence, the optimal portfolio allocation (in the Markowitz sense) is an allocation a∗ such that:

Ωa∗ =
1
λ
µ (5.1)

where µ is homogenous to a vector of asset returns. Let’s remark that the allocation a is in quantities.
It is easy to work with weights since the efficient allocations are scaled by the risk-aversion parameter
and are thus proportional2.

5.2.1.2 The inversion problem

In practice, Ω and µ have to be estimated. Estimation itself is not a problem, since µ and Ω can
be replaced by their empirical counterparts µ̂ and Ω̂. However, when N is high, Ω̂ may be close to
singular with eigenvalues close to zero. This occurs especially when T is of the same order of N (T/N
is greater than one, but close to). This fact has been well identified in the literature (see e.g. Muirhead
(1987) or Pafka and Kondor (2004)) and the asymptotic theory with N,T → ∞ has been set up by
Ledoit and Wolf (2002).

Hence, in those cases, multiplying µ̂ by Ω̂−1 leads to unstable solutions or extreme, over-weighted
vectors. Merton (1980) already remarked the sensitivity of the resulting empirical portfolio to slight
modifications of expected returns. Michaud (1989) underlined the problems arising when inverting
the sample covariance matrix as errors in the return vector are amplified. Coordinates with abnormal
weights are unfortunately those corresponding to the greatest estimation error.

This fact is a real limitation for practitioners. Proceeding to a rolling estimation of Ω̂ and µ̂ at two
consecutive dates t and t + 1, we can hand up with estimates µ̂t and µ̂t+1 that are very close, then,
even if Ω̂t and Ω̂t+1 are also quite close, a∗t and a∗t+1 may be far different due to the nearly singular
nature of Ω̂−1. This is a drawback for the investor since it implies a huge turnover of its portfolio, that
is a deep rebalancing of its positions. This is not suitable since it induces practical constraints and

2Working with weights (i.e. e′a = 1) then corresponds to a particular case of risk-aversion (and level of risk as the

two quantities are univocally related). In the following, we will work with portfolio weights (this being consequently

equivalent.



transaction costs. Moreover the resulting portfolio track results may show an a posteriori variance
that is too high. When the allocation weights in the portfolio are constrained to be positive, the
resulting portfolios may be concentrated in a relatively small number of assets.

However, this must not be taken as an argument to fully reject the framework of Markowitz. Prac-
ticioners have set up some techniques to circumvent this limitation. One can try to reduce the
dimensionality of the problem. This is the goal of the factor-model estimators that specify a given
structure for Ω̂, in order to reduce the number of parameters to be estimated. The main contribution
in this field has been made by Fan et al. (2008) who show that - surprisingly - this method works far
better when using directly Ω−1 rather than Ω (which is of straightforward interest for the allocation
problem). The obtained estimator is then always invertible and the asymptotic theory is derived, in
the case where N,T → ∞, with an increasing number of factors. Other techniques exist, using data
on a more precise time-grid, including high-frequency methods. This increases the ratio T/N and
aims at correcting the numerical instability by increasing the number of observations.

5.2.1.3 Numerical instability

We highlight in this section the instability of the empirical optimal portfolio from a spectral point of
view. As expressed before, allocation a∗ is very sensitive to slight changes in µ. Suppose that µ =
(µ1, . . . , µn)′ and that there exists k ∈ [1;N ] such that the kth-component is modified : µk 7→ µk+dµk.
What is the effect on a∗? We denote with a∗(0) the value, associated to the vector of estimated returns
µ(0) = µ, and with a∗(1) the new value associated to µ(1) after modification on the kth coordinate. We

note: µ =
∑N

l=1 µlEl, where El is the elementary N×1 matrix with 1 on its lth-coordinate, 0 otherwise.

As Ω is symmetric and positive semi-definite, it can be diagonalized. Let (λ1, . . . , λN ) be its eigen-
values, sorted in descending order, and Φ be the matrix made of its eigenvectors Φ = (φ1, . . . , φN ).
Then, if D = diag(λi), Ω = ΦDΦ′. We have: Ω−1 = Φ′diag(1/λ1, . . . , 1/λN )Φ and

a∗(1) − a∗(0) = Ω−1(µ(1) − µ(0)) = Ω−1(dµkEk1).

Elementary calculus gives that the ith component of a∗ is modified such that:

(a∗(1) − a∗(0))i =
N∑

l=1

dµkφilφklλ
−1
l .

Conversely, if the eigenvalue λl is estimated with λ̂l and this estimation is modified from λ̂l to λ̂l−dλ̂l,
then we have:

(a∗(1) − a∗(0))i =
N∑

k=1

µkφ̂ilφ̂kl

(
1

λ̂l − dλ̂l

− 1

λ̂l

)
.

A first order development gives:

(a∗(1) − a∗(0))i '
N∑

k=1

µkφ̂ilφ̂kl(λ̂l)−2dλ̂l.

A slight modification of the smallest eigenvalues is amplified of an order 2 with inversion. This shows
that a modification on µk affects all the coordinates of a∗, and its effect is amplified by the quantity∑N

l=1 φilφklλ
−1
l .



5.2.2 Operator induced by the allocation problem

The Markowitz allocation problem Ωa∗ = µ is an inverse problem in finite dimension. The covariance
operator Ω plays the role of the operator K:

K :
{
RN → RN

a 7→ Ωa.

RN , endowed with the usual scalar product, is a Hilbert space and Ω is a linear operator with finite
dimensional range since R(Ω) ⊂ RN . Thus, Ω is a compact and continuous operator. Moreover, K is
self-adjoint (for the usual scalar product in RN ) since Ω is a symmetric matrix.

Is this problem well-posed? Technically, it depends on the characteristics and the degree of knowledge
of Ω. If Ω is known, symmetric and has strictly positive eigenvalues, the answer is affirmative. The
inverse exists and is continuous (since Ω can be diagonalized with strictly positive eigenvalues). When
Ω is unknown it has to be replaced by a consistent estimator Ω̂. When T/N is close to one, Ω̂ becomes
close to singular. Then, Ω̂−1 is unbounded and the ill-posedness of the Markowitz inverse problem
arises.

We will explore adaptations of regularization techniques such as Tikhonov regularization and spectral
cut-off, respectively explained in Appendix A.2.3.3 and Appendix A.2.3.2. In numerical applications,
where operator K is a matrix, Tikhonov regularization is well-known under the name of ridge re-
gression and it takes the form aα = (K ′K + αI)−1K ′µ, where α > 0 is a parameter unlinked to
the sample size. Ridge regression estimation was introduced by Hoerl et al. (1970) in the multiple
linear regression framework. They show that when data on regressors are non-orthogonal, the OLS
estimators are highly unreliable in the mean squared error sense and sensitive to small changes in
data. The ridge estimator, although it is biased, allows to reduce the mean squared error and the
length of the regression vector. The same results are obtained through a Tikhonov regularization in
infinite dimension. The general form for the ridge regression substitutes αI with a diagonal matrix
where the ridge parameter changes from a dimension to another one. The ridge regression technique
has been extended to the general problem of matrix inversion by Vinod (1976). So, in the portfolio al-
location the ridge technique gives: a∗ = (Ω+αI)−1µ, i.e. the same as Tikhonov regularization. Hoerl
et al. (1970) suggested to select the value for α through the so-called “ridge trace” which traces the
values of the elements of the ridge estimator against α. It is possible to give a Bayesian interpretation
to the ridge regression. The ridge estimate can be seen as the posterior mean based on giving the
parameter to estimate a prior normal distribution with zero mean and variance-covariance matrix Ω.
Indeed, Bayesian estimation automatically solves the problem of ill-conditioning of the regressor ma-
trix through the incorporation in the estimator of the prior information (see the work of Zellner (1971)).

5.2.3 Overview of allocation techniques

We present here an overview of the allocation techniques used in practice, and try to distinguish in
which way they are relevant for our analysis.



5.2.3.1 Redefinitions of the allocation problem

For Equally-Weighted portfolios, all the components of the N underlying assets of the portfolio are
equal and assigned to be weighted as 1/N , regardless of their statistical properties. This technique is
effectively used in practice (see e.g. Windcliff and Boyle (2004)). Empirically, DeMiguel et al. (2009)
working on several datasets (mainly equity data) found that naive equally-weighted portfolios are even
more interesting in out-of-sample when compared to allocation strategies where parameters have to
be estimated. The resulting portfolios are diversified in proportions and focus on performance, which
is much better in out-of-sample (compared to GMV portfolios, see below). A financial justification
(the portfolio is located on the efficient frontier) is obtained in the particular case where all assets
have identical statistical moments (mean and variance) with identical correlations. However, the di-
versification argument fails in case of heterogenous statistical properties.

The Global Minimum Variance (henceforth GMV, or simply Minimum-Variance portfolios)
only aims at minimizing the variance of the resulting portfolio, that is to say to minimize a′Ωa.
This portfolio has a classical financial interpretation, and is on the efficient frontier. It is simple to
compute as it does not require to invert the covariance matrix. It provides out-of-sample satisfying
Sharpe ratios, even if the induced risk diversification is not sufficient (portfolios are too concentrated
and potentially exposed to high drawdowns).

The Most Diversified Portfolio (henceforth MDP) developed by Choueifaty and Coignard (2008)
tries to reach maximum diversification by maximizing the diversification ratio which is the average
of the volatilities of the assets divided by the portfolio volatility. This allocation technique is mostly
considered by practitioners. Closely related, the Maximum Sharpe Ratio (MSR, see Martellini
(2009)), aim at maximizing the Sharpe ratio of the resulting portfolio, that is for a vector of weights
w the quantity (µw − r0)/

√
(w′Ωw). As shown in Goldfarb and Iyengar (2003), MSR portfolios can

be interpreted as specific minimal-variance portfolios with modified constraints on the return.

We remark also that the Markowitz allocation uses the two first moments of the return distribution.
However, as portfolio allocation is also represented by an expected utility maximization problem,
some approaches redefine the problem with a closer expression for the expected utility. The latter
is represented through a Taylor series expansion, including higher moments of the distribution. This
allows to deal with high-dimensional portfolios and with highly non-Gaussian return distribution (see
for instance among others Jondeau and Rockinger (2006), Chabi-Yo et al. (2008) or Martellini (2009)).

Equally-weighted Risk Contributions (henceforth ERC) portfolios may be viewed as minimum-
variance portfolios where a constraint is added on the risk-diversification, as all assets are weighted
to have an equal contribution in risk. Those allocation procedures are simple to build and appear to
be a good compromise empirically between 1/N and minimum-variance allocation (see Qian (2005),
or Demey et al. (2010)). The philosophy of ERC allocation is to weight the assets such as each of
them has the same contribution to the overall variance. For a set w = (w1, ..., wN ) of weights of N
risky assets with covariance matrix Ω. The variance of the portfolio σ(w) is σ(w) =

√
w′Ωw. The

standard-deviation is decomposed as follows:

σ(w) =
N∑

i=1

wi∂wi
σ(w) =

N∑
i=1

wi

wiΩii +
∑

j 6=i wjΩij

σ(w)
.



The resulting vectors of weights w0 are such that:

N∑
i=1

wi = 1 , wi ∈ [0; 1] , wi(Ωw)i = wj(Ωw)j , ∀i 6= j.

At this point, those allocations procedures do not provide a mathematical treatment of the theoretical
optimal Markowitz portfolio (optimal from the risk-performance perspective), but rather choose to
focus on sparseness, or on nominal/risk diversification for instance. Obviously, they do not constitute
regularization techniques as no problem is even stated for the 1/N allocation and MDP, MSR tech-
niques can be viewed as reformulation of the Markowitz problem. However, those methods do not
get rid off the instability problem of the variance matrix. Consequently, using one of these techniques
does not prevent from using a preliminary cleaning algorithm for the covariance matrix used in the
procedure.

5.2.3.2 The relevant techniques

We will study in this work two specific allocation methods from the regularization perspective: the
shrinkage technique and the Black-Litterman approach. The shrinkage (or reduction) technique has
been applied to control the form of the variance-covariance matrix with the aim of obtaining more
stable portfolios. The idea of shrinkage procedure, reviewed in Section 5.3.1, is to shrink the sample
covariance matrix towards a matrix with a better structure, called target matrix, so that the resulting
estimator has a stable inverse. Alternatively, Black and Litterman (1992) developed a setting where
investors introduce in the allocation procedure their views on the market in order to stabilize their
portfolio. This method, claimed to be inspired by the Bayesian framework and is reviewed in Section
5.4.2.1.

5.2.3.3 Other methods

To be complete, we present other allocation techniques. Their link with regularization are not tackled
here but this could be a perspective for future work. Jagannathan and Ma (2003) show that imposing
a no short-sell constraint allows to decrease the out-of-sample risk, even if the constraints are wrong
or unjustified (stocks with high covariances tend to receive huge negative weights). Broadie et al.
(2009) add a l1 penalty term to the optimization program up to a parameter to be calibrated. This
may be considered as a version of lasso regression. In addition to the regularizing effect, this allows to
take into account transaction costs, to control short-selling, and finally to obtain preferentially sparse
portfolios (i.e. with few non-zero positions). As expressed before, the constraint on short-selling en-
sures the stabilization of the portfolio. However, this paper also underlines that such a constraint
naturally implies the construction of sparse portfolios. Empirically, this method works well as the
obtained portfolio are more robust, less affected by estimation error and noisy information. Finally,
an other approach is to define a more structured model for the covariance matrix, as e.g. in Specht and
Gohout (2003). A principal component analysis is made on the return series and the corresponding
principal components are studied as univariate series through a given volatility model (GARCH for
instance).



5.3 Linear methods

5.3.1 Shrinkage

5.3.1.1 Setting

Shrinkage (also called reduction) aims at correcting the sample variance-covariance matrix when this
latter is ill-conditioned. A simple version of the shrinkage estimator of the covariance matrix is built
as a convex linear combination of the empirical estimator with some suitably chosen target matrix
that has a better structure. Initial work on shrinkage estimators for the mean of a multivariate normal
distribution has been done by Stein (1986) who shows that if we are willing to give up a little in terms
of bias, we could do better in terms of mean squared errors. Mathematically, the intensity of the
reduction is a parameter3 α ∈ [0; 1] and represents the relative weight of a target matrix in the new
covariance matrix. If Ω̂ is the sample variance-covariance matrix, and Ta denote the target matrix,
then the new matrix Ωs is computed as:

Ωs = αTa + (1− α)Ω̂.

The mixing parameter α may be chosen in order to provide an arbitrage between the estimation error
coming from Ω̂ and the specification error of Ta. Ledoit and Wolf (2004) gives a review of this method,
including its application in practice. In their framework, α is chosen in a so-called ”optimal way”.
The criterion is to maximize the expected accuracy of the “shrunken” estimator, and to minimize the
distance, computed using the Frobenius norm, between the covariance matrix and its reduced estima-
tor. When α is estimated, such procedures must not involve the inverse of the covariance matrix for
obvious reasons. Two common choices for Ta are a constant correlation matrix or a matrix derived
from a market model.

In the constant correlation matrix model, the terms of the matrix Ta only depends on the variance of
the assets. Its diagonal is made of the individual variances vi of the asset returns ri

t, i = 1, . . . , N . The
non-diagonal terms Tij are equal to c√vivj where c is computed from an overall quantity estimated
upon returns. In the market model, one first writes from the CAPM the following expression for an
asset i of returns ri

t: r
i
t = αi + βir

b
t + ηi

t where the rb
t are the return at time t of a market benchmark.

ηi
t is supposed to be an i.i.d. noise with variance σi. Thus, the target matrix Ta is set equal to
Ta = v2

0ββ
′ + Σ where v0 is the variance of rb, β = (βi)i=1:N and Σ = diag(σ1, . . . , σN ). Ledoit

and Wolf (2003) precise that when Ta = µI , µ must be equal to the trace of the sample covariance
matrix. This ensures that the initial allocation problem will be replaced by a problem with the same
overall level of risk. Finally, shrinkage technique can be extended to other asset classes than equity
and stocks.

5.3.1.2 Effect on the spectrum

Intuition

The effect of shrinkage on the spectrum of the sample matrix is more intuitive when Ta = µI, µ being
the trace of the sample matrix: Ωs = αµI + (1 − α)Ω. Let λk be an eigenvalue of Ω and φk the
associated eigenvector. Then φk is also an eigenvector of Ωs for the eigenvalue αµ+ (1− α)λk since:

3Despite its notation, this parameter α is not the same as the parameter which will be introduced below in the B-L

approach.



Ωsφk = αµφk + (1− α)Ωφk

= αµφk + (1− α)λkφk

= (αµ+ (1− α)λk)φk.

With α between 0 and 1, when λk is greater than µ, αµ+ (1− α)λk is greater than µ but lower than
λk. Conversely, when λk is lower than µ, this quantity is inferior to µ but greater than λk. The effect
of shrinkage is then to shrink the range of the spectrum and to concentrate it around the trace. The
major effect is on the lowest eigenvalues that are shifted upwards. This is a simple intuition that
confirms the argument of Ledoit and Wolf (2003) explaining that when the target matrix is µI, the
shrinkage reduces the dispersion of the sample eigenvalues towards their mean. α is then interpreted
as “a normalized measure of the error of the sample covariance matrix”. The paper also shows why
the eigenvalues of the sample covariance matrix are more dispersed than the eigenvalues of the true
matrix, and why it is preferable to use estimators with eigenvalues that are less dispersed that the
eigenvalues of the true covariance matrix. This dispersion is also function of T/N .

In the general case, Ω̂ is replaced by Ωs = αTa + (1− α)Ω̂. Let λ̂k be the eigenvalues of Ω̂ and φ̂k be
the corresponding eigenvector. Without a target matrix, the solution a∗ of Ω̂a∗ = µ is then obtained
as:

a∗ =
N∑

k=1

1

λ̂k

< µ, φ̂k > φ̂k.

With Ωs = αI + (1− α)Ω̂:

as
∗ =

N∑
k=1

1

α+ (1− α)λ̂k

< µ, φ̂k > φ̂k

since Ωs has eigenvalues equal to λ̂k(1 − α) + α with the same eigenvectors than Ω̂. With notations
of Appendix A.2.3.1 we get a regularization scheme qI(α, λ̂):

qI(α, λ̂) =
λ̂

α+ (1− α)λ̂

which is a first order regularization scheme.

General case

We turn now to the general case. We consider a general target matrix Ta with eigenvalues lk and
corresponding eigenvectors ϕk and we state the following proposition (the proof is available in Section
5.6.1):

Proposition 5.3.1. Let Ta be a nonsingular square matrix and Ωs = αTa +(1−α)Ω̂ be the shrinkage
estimator of Ω. The approximate solution as

∗ = Ω−1
s µ̂ corresponds to a regularized solution obtained

through a first order regularization scheme. Moreover, if (λ̂j , φ̂j)j denote the eigensystem associated



to Ω̂, then Ωs has eigenvectors (φ̂j)j and eigenvalues ((1−α)λ̂j +
∑N

u=1 αlu < ϕu, φj >
2)j and as

∗ can
be rewritten as:

as
∗ =

N∑
j=1

1

(1− α)λ̂j +
∑N

u=1 αlu < ϕu, φ̂j >2
< µ̂, φ̂j > φ̂j .

�

In particular, since
∑N

u=1 lu < ϕu, φ̂j >
2= ||T

1
2

a φ̂j ||2 when Ker(Ω̂) = {0}, we see that as
∗ takes the

form in (A.11) so that the shrinkage technique corresponds to a generalized Tikhonov regularization
scheme. The asymptotic theory is here quite particular but interesting. This aspect has been treated
in Ledoit and Wolf (2002). It is implicit that when N → ∞, we must have also T → ∞ in order to
have T ≥ N . Intuitively, the degree of ill-posedness is decreasing in T (with N fixed) and increasing
in N (with T fixed, T ≥ N). This point has been underlined by Ledoit and Wolf (2003) : they
found that the shrinkage intensity α has to increase with the estimation error made on the sample
covariance matrix, and to decrease with the misspecification error due to the target matrix Ta. The
estimation error disappears as T increases while the latter does not. Hence, the misspecification error
is negligible when T is small, but its influence matters as T becomes large. This is coherent if we
interpret α as a true regularization parameter. Ledoit and Wolf (2003) derive the behavior of the
“optimal” α (optimal as defined in paragraph 5.3.1.1) that must be of order O(1/T ), with a specified
constant of proportionality that can be estimated.

From a regularization perspective, the point of interest is to know whether limα→0 q(α, λ) = 1. In usual
regularization schemes, α is increasing in the measurement error, given in our case by the estimation
error made on Ω̂. In portfolio allocation, the sample has two dimensions: N and T , one linked to the
misspecification error and the other one to the measurement error. Therefore, α must be decreasing
in T . This is satisfied if α depends on T , but we have also to control that T remains greater than N
as N → ∞ (we can still consider α as a O(1/T )). This asymptotic framework is known as general
asymptotics (Ledoit and Wolf (2003)). Moreover, we must keep in mind that for a given j ∈ [1;N ],
q(α, λj) depends on the term

∑N
u=1 lu < ϕu, φj >

2, but all the terms change with N . A very simple
hypothesis can help to solve this situation.

Proposition 5.3.2. If we assume that the spectrum of the target matrice is uniformly bounded from
above(uniformly in N and T ) by a constant M0 (i.e. for every N , and sample of size T , ∀u ∈ [1;N ],
|lu| ≤M0), then limα→0 q(α, λ) = 1 and shrinkage is a regularization technique.

�

The assumption that the spectrum of the covariance matrix is bounded from below may often be
found in the literature. For obvious reasons, and as compact operators appear commonly in ill-posed
inverse problems, this is typically a class of assumption that we cannot make as we aim at studying
the opposite. With assumptions of propositions 5.3.1 and 5.3.2 we have that:

0 ≤
N∑

u=1

lu < ϕu, φ̂j >
2≤M0

N∑
u=1

< ϕu, φ̂j >
2= M0



since
∑N

u=1 < ϕu, φj >
2= ||φj ||2 = 1 as (φj) is an orthonormal family for each N . Then, we can

control for the convergence of q(., .) independently of the order of the eigenvalue, as a general function
of λ (and no more λj), as λ→ q(α, λ) = λ/((1− α)λ+ αM) so that limα→0 q(α, λ) = 1.

Remark 1. Ledoit and Wolf (2003) attributes the fact that the sample eigenvalues are more dispersed
than the true ones to the presence of error also in the sample eigenvectors, and that shrinkage is a
correction for this effect. The former calculus provides a beginning of explanation to see how the
eigenvectors are related to eigenvalues of the shrunken estimator.

Remark 2. Jagannathan and Ma (2003) impose a no short-sell constraint even if the constraints are
wrong or unjustified. As underlined by Ledoit and Wolf (2004), this can be somewhat related to a
shrinkage approach. Considering such an approach as a regularization under convex constraints (see
Engl et al. (1996)) could be a question of future research.

5.3.2 Spectral cut-off

Techniques that explicitly manipulates the eigenvalues of the sample covariance matrix are empirically
less used but may be found in the literature. We see how it adapts to the problem of portfolio allocation,
and we explore how it can be linked to existing techniques.

5.3.2.1 Eigensystem interpretation

Eigenvectors φi are homogenous to portfolios. Matrix Φ, whose columns are the eigenvectors φi, is a
basis of orthonormal portfolios resuming best the linear information available through the observation
of asset returns. Eigenvalues are the specific variances of those portfolios. This framework is very
close to Principal Component Analysis (PCA) where the covariance matrix of the variable of interest
is diagonalized. The first eigenvectors (corresponding to the highest eigenvalues) explain best the
information, in the sense that they have the greatest contribution to the overall variance. Hence, the
last eigenvectors are the less informative. In the degenerate case, if Ωφk = 0, this means in financial
terms that portfolio k has a variance that is close to zero and may appear as risk-free. Then, if
the expected return is positive, even slightly, the allocation process understands it as an arbitrage
opportunity and overweights the allocation in this portfolio, artificially considered by the algorithm
as a “good opportunity”. In terms of information, this means that φk is collinear to the other
ones and then it can be expressed as a linear combination of other eigenvectors. Thus, eigenvectors
corresponding to the smallest eigenvalues are portfolios that are redundant in term of information.
Imposing constraints on the portfolio weights (like for instance, nonnegativity constraints and upper
bounds) will prevent from getting resulting portfolios with arbitrarily huge weights.

5.3.2.2 Selection of the threshold

Intuition

Following this analysis, there is an intuitive procedure to ensure the stability of mean-variance port-
folios, that naturally appear as deriving from the spectral cut-off. The aim is then to stay in the
initial framework of Markowitz and to tackle the true source of portfolio instability. First, one has
diagonalizes Ω̂ and get the eigenvalues λ̂1, . . . , λ̂N with corresponding eigenvectors φ̂1, . . . , φ̂N . The



next step is to choose an order k (with an auxiliary criterion) and to keep only the information relative
to the k greatest eigenvalues.

A possible approach is to simply drop this information and to restart the usual Markowitz allocation
with the set of assets X = (X1, . . . , XN ) replaced by φ̂1.X, . . . , φ̂k.X. This does not reduce the di-
mensionality of the problem, but reduces the sources of instability by working on a set of sufficiently
informative and linearly independent portfolios. This method has at least two drawbacks. First, the
information coming from the eigenvectors corresponding to the lowest eigenvalues is discarded. Sec-
ond, as the overall level of variance of the allocation problem is equal to the trace of the covariance
matrix, dropping some eigenvalues leads to a different problem, as it defines a new level of risk.

In, Potters et al. (2005), eigenvalues over a given threshold are kept unchanged; the smallest being
modified such that they are set to a common constant value. This value is chosen in order to preserve
the trace of the initial matrix. This allows to work with the same level of overall risk for the allocation.
We must add that such methods are already implicitly behind factor models, as they seek to sum up
the information between assets through market factors that appear to be sufficient4.

Random Matrix Theory

The Random Matrix Theory is gaining in popularity in finance, as this theory may provide insights
on the singular value decomposition of the sample correlation matrix. A detailed description would
be far beyond the scope this thesis but a see for instance Mehta (2004) for a complete review. The
question becomes whether the information coming from this matrix, and conveyed through its eigen-
values, can be considered significantly different from pure noise. Eigenvalues and eigenvectors that are
significantly different from the “random” case are those which carry the most valuable information.
Comparison of the empirical spectrum of the covariance matrix with the theoretical distribution of
the eigenvalues of a random matrix helps in practice to calibrate thresholds for spectral cut-off.

Let’s suppose that the ratio r = T/N is fixed, greater than 1. When we assume that the coefficients
of the matrix of assets price changes are independent, identically distributed, the distribution of
the eigenvalues of the resulting correlation matrix is known when N,T → ∞ and r stays fixed. This
density takes sense only in an asymptotic framework and is known thanks to the work of Marcenko and
Pastur (1967). This can be a useful guideline to evaluate the available information carried by a sample
correlation matrix and a rather large number of studies have already been made on financial time-
series (see also among other works Malevergne and Sornette (2004), Potters et al. (2005), Bouchaud
et al. (2007)).

4As Malevergne and Sornette (2004) expresses it, the difficult part is a reasonable and robust choice of the market

portfolio. The authors show that the existence and the appearance of factors is in fact the “result from a collective

effect of the assets”. Factors are then both a cause and a consequence of asset correlation. Consequently, the fact of

being “data driven” allows to find the most informative portfolios and to allocate in a traditional fashion, dropping

redundant information that generates instability



5.4 Bayesian methods

5.4.1 Introduction

5.4.1.1 Motivation

The source of ill-posedness lies in the spectral configuration of the variance matrix, but the manifesta-
tion of this instability occurs when modifications are made on the vector of returns. Replacing a sample
mean of returns by a “smoother” version is a quite natural idea. Bayesian methods can evidently help
in achieving this objective, first by providing alternatives to the common sample mean when beliefs
on the vector of returns are smoothly updated. But the Bayesian approach can be extended to in-
clude the Markowitz optimization problem into a more global framework. As an illustration, the next
paragraph states that one may also provide to the shrinkage estimator a Bayesian interpretation.

5.4.1.2 Empirical Bayes interpretation of the shrinkage estimator

The fact that a shrinkage estimator can be motivated by a Bayesian argument is well known (see Copas
(1983)). In the literature, the form of several shrinkage estimators has been motivated through an
empirical Bayes modeling as, for instance, the James-Stein estimator that corresponds to a prior mean
of the parameter of interest set close to 0. Here, we propose to interpret the shrinkage estimator of
the covariance matrix as an Empirical Bayes estimator. Our interpretation is motivated by Haff (1980).

Let T̂a be a consistent estimator of the target matrix Ta. Let assume that the sampling and prior
distributions are specified as

Ω̂|Ω ∼ WN×N

( 1
1− α

Ω, n+ 1
)

and Ω−1 ∼ WN×N

( 1
α
T̂−1

a , 2n+ 3
)
,

where WN×N denotes a Wishart distribution on the cone of the N ×N matrices. The matrix T̂a must
be positive definite and it is replaced by its true value Ta if it is known. By writing down the kernels
of the two Wishart distributions and by using the properties of the trace operator we have

pdf(Ω|Ω̂) ∝ |Ω|−
N+1

2 exp
{
− 1

2
tr((1− α)Ω−1Ω̂)

}
×

|Ω|−
N+2

2 exp
{
− 1

2
tr(αT̂aΩ−1)

}
∝ |Ω|−

(N+2)+N+1
2 exp

{
− 1

2
tr([(1− α)Ω̂ + αT̂a]Ω−1)

}
.

Hence, the posterior distribution of Ω is an Inverse Wishart

Ω|Ω̂ ∼ W−1
N×N ((αT̂a + (1− α)Ω̂), N + 2)

and it has mean E(Ω|Ω̂) = αT̂a + (1 − α)Ω̂. We have proven that the shrinkage estimator Ωs is the
posterior mean of Ω given Ω̂.

In general, the parameter α is unknown, but its optimal value is usually specified in terms of quantities
that can be estimated. We denote with α̂ the estimated optimal shrinkage intensity and we substitute
this value in the sampling and prior distribution. Hence, the shrinkage estimator Ωs is called Empirical
Bayes since the prior distribution depends on the sampling information through α̂.



5.4.2 Black-Litterman

The Black-Litterman approach (B-L hereafter, Black and Litterman (1992) or Lee (2000)) is a tech-
nique proposed to integrate in the allocation process the forecasts of the investor, while solving the
instability. Due to its simplicity this technique is now commonly used, and raise the attention of
portfolio managers are interested in incorporating personal views in the model. Even if the model
is not usually presented as a regularization technique, this is one of the fundamental goal that this
model seeks in fact to achieve.

B-L approach primary focuses on µ. We will see that however, there is also an effective action on
the covariance matrix. It consists in computing portfolio weights without having to estimate or to
completely specify µ̂. The idea is that an investor can introduce some views that are subjective fore-
casts of deviations from market equilibrium. Hence, an investor invests first in the market portfolio;
then by adding some views, he deviates in the direction of those views. If an asset is not concerned
by any view, its corresponding allocation will be directly related to the equilibrium portfolio. Several
extensions of the B-L model exist. All these are beyond the scope of this chapter as we initially
wish to explore the regularization properties of the technique. However, we underline that the B-L
setting extends to other markets and classes of assets than equity as returns may be replaced by risk
factors. Other improvements may exist, where volatilities and correlations may also be stressed; even
non-linear and very general views can be included. See Meucci (2008) for a general approach and
review.

5.4.2.1 Setting

The main feature of the B-L model is that it allows to mix investors specific forecasts with equilibrium
views. Those views may be general, derived from the CAPM theory, or deliberately chosen by the
fund manager (for instance, according to an historical analysis). The CAPM expresses each stock
return as the sum of the risk-free return r0, an excess return with respect to this risk-free return,
which is proportional to the benchmark excess return, and an idiosyncratic return with zero mean.
Formally, for an asset i, the expected return is:

E[ri
t] = r0 + βi(RM − r0)

where βi is the sensibility parameter, i.e. the correlation of asset i with the market portfolio. The
CAPM theory derives the following expression for Π, the implied asset excess returns vector:

Π = AΩ̂wM

that is computable since A and wM can be observed (see Section 5.1.2) and Ω̂ is estimated (and
need not to be inverted). The market capitalization weights wM emulates the weights of the market-
equilibrium portfolio. It is straightforward that wM can be replaced by any w0 by the manager if
she thinks that her new w0 is a more accurate proxy for the equilibrium weights of the market he is
participating in. Expression using capitalizations is the most often used but may also be modified, as
the most important is that Π is, in a way, a kernel of stability for the allocation algorithm.



The method starts by supposing that the assets extra return5 R := rt+1 − r0,te to be normally dis-
tributed as R ∼ N(µ,Ω) where µ cannot be observed and is itself random. The model specifies two
distributions for µ, one suggested by the market equilibrium and another one suggested by investors’
forecasts. The model aims at specifying in the same time a distribution for Π, conditional on µ.
Within a Bayesian framework the posterior distribution of µ conditional on Π may be derived. Rather
than using the sample mean of µ as an estimator, this latter is replaced by the mean (denoted as ER
in the following) of the posterior distribution of µ conditional on Π. Of course, the expression of ER
will incorporate Ω̂ in order to tackle the ill-posedness.

The expression of the forecasts specifies the distribution of l linear combinations of the elements of µ,
Pµ ∼ N(V, F ), where we adopt the following notations:

• P is a l ×N -dimensional matrix selecting the assets concerned with the views (or forecasts);

• F is a l × l-dimensional diagonal covariance matrix of the errors on these views;

• V is a l-dimensional vector of the absolute expression of those views.

Π is assumed to be normally distributed as N(µ, αΩ̂). The scalar parameter α has to be calibrated
(empirically, α is assumed to lie between 0 and 1, see Lee (2000)). Under those assumptions, µ is
normal with mean ER and variance V R equal to:

ER = [(αΩ̂)−1 + P ′F−1P ]−1[(αΩ̂)−1Π + P ′F−1V ] (5.2)

V R = [(αΩ̂)−1 + P ′F−1P ]−1.

ER may be expressed in the following form, which is more intuitive from a financial point of view
since it is expressed as the deviation from Π (the optimal portfolio being a deviation from the market
portfolio):

ER = Π + (αΩ̂)P ′(F + αP Ω̂P ′)−1(V − PΠ).

If no views are specified, we recover that:

ER = [(αΩ̂)−1]−1[(αΩ̂)−1Π] = Π.

Finally the allocation uses ER instead of µ̂:

a∗ = (AΩ̂)−1(ĒR)

which rewrites :

a∗ = wM +
α

A
P ′(αP Ω̂P ′ + F )−1(V − PΠ).

The model is Bayesian in several ways. Section 5.4.2.2 gives the mathematical background to un-
derstand the model from a Bayesian perspective. Practically, the manager can update at each date
its equilibrium vector Π by replacing wM by any w reflecting current or new information. Then, the
allocation can be updated at each date through Π. We see with the latter formula that if both wM

5We do not index R with the time index because, given r0,t, the extra return R is a random variable with the same

distribution at each time t.



and the views are unchanged at each allocation, the weights will not evolve. The coherence of this
approach is to model the distribution of Π conditional on µ since it means that conditional on the
same µ, Π is on average equal to µ. If all the agents believe in the views µ, the equilibrium returns
will tend to Π itself centered on µ, which confirms the equilibrium justification of Π.

5.4.2.2 A link with Bayesian theory?

The B-L approach looks similar to a Bayesian setting since a prior distribution is specified on µ,
which is supposed to be random, and this prior is then updated to form new opinions. This is the
commonly accepted view among practitioners. However, in order to have a Bayesian interpretation
we cannot use the conditional distribution of R|µ as sampling mechanism, even if it could seem the
more natural candidate. Indeed, as developed in Satchell and Scowcroft (2000), we have to invert
the distribution of µ|Π in order to obtain Π|µ ∼ N (µ, αΩ̂). This distribution will play the role of
the sampling mechanism. Hence, Π must be meant as being the implied returns from the equilibrium
model, depending on our data. To see this, we suppose that we observe a sample of extra-returns on
the N assets and to average them so that we obtain

R̄ =
1
T

τ∑
t=1

(rt −Rt−1e)

R̄|µ ∼ N
(
µ,

1
T

Ω̂
)
.

Scalar 1/T plays the role of α in the original B-L model and R̄ is also an estimator of Π. Then, the
views give a prior distribution on l linear combinations of the components of µ that is mixed with
the information coming from the equilibrium model (i.e. in the sampling model). In practice the
sampling mechanism must be understood in the sense that, if all the investors hold the same view on
µ and invest in a CAPM-type world, then Π represents the equilibrium returns conditional on these
common views. We state the following proposition (proof is available in Section 5.6.2):

Proposition 5.4.1. Let R̄|µ ∼ N (µ, 1
T Ω̂) be the data equilibrium return, given the forecast µ held

by the investors. Let Pµ ∼ N (V, F ) be the prior beliefs on l linear combinations of expected excess
returns, with F a diagonal matrix. Then, the posterior forecast, given the equilibrium information is

µ|R̄ ∼ N (ER, V R),

where ER and V R are as given in (5.2).

�

As expressed in Satchell and Scowcroft (2000), “the interpretation of what is prior and what is sample
information may differ from B-L”. Anyway, the Bayesian interpretation is natural in the updating
procedure described in Equation 5.4.2.1. In practice, the prior-to-posterior transformation is not
the same computation written down by Black and Litterman to obtain the modified expected excess
returns ER, but it gives the same result. Hence, it can be seen as a way to interpret the B-L model
from a Bayesian perspective.



5.4.2.3 Effect on the spectrum

The main effort of the model is to focus on the vector of expected returns. Even if the initial source
of instability is the inversion of Ω̂ and not the estimation of µ, we will show in this paragraph that
B-L model provides in fact a correction on this matrix. Up to our knowledge, such a reading of this
correction is not provided in the literature. The expression of a∗ is:

(AΩ̂)−1[(αΩ̂)−1 + P ′F−1P ]−1[(αΩ̂)−1Π + P ′F−1V ].

The multiplying matrix is:

M = (AΩ̂)−1[(αΩ̂)−1 + P ′F−1P ]−1.

We will explicit its eigenvalues. For this we may study M−1. M is proportional to M1(M1 +M2)−1

where M1 = (αΩ̂)−1 and M2 = P ′F−1P . Then M−1 is proportional, up to a parameter A/α, to the
matrix:

[M1(M1 +M2)−1]−1 = (M1 +M2)M−1
1 = Id +M2M

−1
1

where M2M
−1
1 = αP ′F−1P Ω̂. Thus the eigenvalues of M−1 have for lower bound :

A/α(1 + inf sp(αP ′F−1P Ω̂))

where sp(.) stands for the set of eigenvalues of a matrix. Then, even if the eigenvalues of P ′F−1P Ω̂
tends to zero, the set of eigenvalues of M−1 is bounded from below (for fixed and calibrated A and
α) and the eigenvalues of M cannot diverge, solving the instability of the initial problem.

5.4.2.4 Is Black-Litterman really Bayesian?

We have seen in the former discussion that the B-L technique aims fundamentally not to correct the
estimation of the covariance matrix, but rather insists in the modification of the expected returns vector
by the incorporation of specific views. The idea here is to exploit the information in the theoretical
CAPM model and the prior information given by some views. Hence, the frequentist estimator µ̂ is
replaced by the posterior mean estimator ER := E(µ|R̄) and the original inverse problem becomes:

AΩ̂a∗ = ER.

Therefore, a∗ can be rewritten:

a∗ =
1
A

[
1
α
I + (P ′F−1P )Ω̂]−1[(αΩ̂)−1Π + P ′F−1V ].

We could interpret the first squared bracket as the Tikhonov regularization of the inverse of P ′F−1P Ω̂
and 1

α as the regularization parameter. Actually, this interpretation is correct for finite sample size,
but, as the sample size increases, 1

α increases too, since 1
α = T . Then, the regularization bias does

not decrease and this does not make sense.

In a more appropriate way, we could interpret the Black-Litterman approach as a Bayesian regulariza-
tion scheme. Bayesian analysis of inverse problems takes the posterior distribution (and the quantities



recovered from it) as solution of an inverse problem. The ill-posedness is solved through the incor-
poration of the prior distribution, at least when the dimension of the problem is finite. The Bayes
regularization scheme is convergent in the sense that the bias introduced by the prior distribution
disappears as the sample size T increases to ∞. To show this, we rewrite ER with Π and α replaced
by R̄ and 1

T , respectively. Then, (by neglecting the risk-aversion parameter) :

Ω̂a∗ = (T Ω̂−1 + P ′F−1P )−1(T Ω̂−1R̄+ P ′F−1V )

= (Ω̂−1 +
1
T
P ′F−1P )−1(Ω̂−1R̄+

1
T
P ′F−1V )

aα
∗ = (I +

1
T
P ′F−1P Ω̂)−1(Ω̂−1R̄+

1
T
P ′F−1V )

that converges to Ω̂−1R̄ and by the law of large number it converges to a∗ = Ω−1µ. We can interpret
1
T as the regularization parameter and we clearly see that the prior distribution (that provides the
regularization) disappears as the sample size increases. In conclusion, the B-L correction is a regular-
ization scheme in the Bayesian sense, but not in the classical sense. Its stabilization effect on
the eigenvalues has been however shown in Section 5.4.2.3.

5.4.2.5 Black-Litterman as a shrinking procedure

Equation (5.2) in the B-L approach suggests to interpret ER as deriving from a shrinkage procedure.
For this being true we have to suppose that there exists an n×1 vector υ0 such that the prior mean of
the views can be written as V = Pυ0. To be more precise, this is equivalent to say that the investors
have a prior information that they translate in the specification of a prior mean for the vector µ,
that is E([µ] = υ0, where the expectation E[·] is taken with respect to the prior distribution. Then,
from this information on the whole vector µ, they derive the prior information (or view) on l linear
combinations of the components of µ. We notice that when l < N the reverse is not feasible, i.e. it is
not possible to recover υ0 from V , due to the singularity of P ′P . Then, (5.2) can be rewritten as

ER = [(αΩ̂)−1 + P ′F−1P ]−1[(αΩ̂)−1Π + P ′F−1Pυ0]

and it looks like a convex combination of Π and υ, that is of the two priors on µ, one given by the
CAPM and another one given by the subjective views. Hence, the B-L approach shrinks (in the matrix
sense) the CAPM-asset excess returns Π towards the view υ and then it corrects the instability of the
resulting portfolio. We summarize our result in the following proposition.

Proposition 5.4.2. Let Pµ ∼ N (V, F ). If there exists an n × 1 real vector υ0 such that V = Pυ0,
then the quantity ER found with the B-L approach can be interpreted as a shrinkage estimator, with
intensity of reduction equal to

[(αΩ̂)−1 + P ′F−1P ]−1P ′F−1P.

�

The difference between the B-L approach and the shrinkage procedure explained in 5.3.1.1 consists
in the fact that the first one is shrinking a mean vector and the second one is shrinking



a covariance matrix. We have stressed that this interpretation of B-L as a shrinkage procedure
requires to have a prior belief on the whole µ and not only on l linear combinations of components of
µ. This assumption is plausible from a Bayesian point of view, since µ is a random vector we believe
distributed according to a certain measure. Then, from this distribution, is possible to recover a prior
distribution for a linear transformation of µ.

This result is important because it gives a formal statistical justification to the B-L solution. The
modified estimator ER was originally motivated in Black and Litterman (1991) by practical considera-
tions. We have shown that it is possible to find a mathematical/statistical foundation of this estimator
in terms of the modification that it produces on the spectrum, a justification from a Bayesian point of
view (since ER can be seen as posterior mean) and from a frequentist point of view (by interpreting
ER as a shrinkage estimator). At the best of our knowledge, such an interpretation has not been
proposed in previous literature.

5.5 Conclusion

To circumvent the instability of the mean-variance portfolio allocation, practitioners have designed
numerous methods. Previous works have clearly shown that numerical problems stem from the in-
version of the sample covariance matrix, especially when the number of assets and the number of
data are close. In order to unify this framework and to compare those methods from a mathematical
perspective, rather from out-of-sample backtests, we have provided a spectral interpretation of those
techniques. The inverse writing of the optimization problem opens a field of questions that naturally
involve the regularization nature of those techniques.

Methods deriving from spectral cut-off are well adapted to the resolution of this problem since the
lowest eigenvalues correspond to “misleading” portfolios that are considered as risk-free but may also
be considered as linearly redundant. Random Matrix Theory can be a useful tool in selecting the in-
formative eigenvalues. Performing “pure” spectral cut-off implies however a trade-off for the investor,
between portfolio stability and overall variance. The error in the sample eigenvectors should also be a
matter of interest. The numerical instability is of course mainly caused by the presence of arbitrarily
low eigenvalues, but as eigenvectors are homogenous to portfolios, the study of their behavior should
also be taken into account.

In this chapter, we have highlighted the action of shrinkage on the spectrum. We have in particular
underlined that shrinkage is is a first order regularization scheme and gave arguments to understand
what is the link between sample eigenvalues dispersion and eigenvectors, and highlighted the Bayesian
interpretation of the shrinkage estimator.

Alternatively, the Black-Litterman setting has a Bayesian inspiration in several ways, even if we con-
firmed that the Bayesian reading usually given is false. We have shown that it is possible to find
a mathematical justification of the Black-Litterman estimator in terms of the modification that it
produces on the spectrum, both from a a Bayesian and from a frequentist point of view. Even if
the true source of instability is not directly tackled, the substitution in the estimator of expected
returns, bounds in fact from below the eigenvalues of the resulting multiplying matrix. Furthermore,
it must be considered technically as a Bayesian regularization scheme, and we show that the B-L



procedure may be considered as a shrinkage procedure, under particular specifications of the views,
with (schematically) a vector that is shrunken instead of a matrix.

Directions for future work are numerous. The regularization nature of techniques adding a l1 penalty or
a no short-sell constraint would have to be explored. In extension, a systematic lecture of regularization
techniques, including Bayesian ones, could extend the list of allocation methods.

5.6 Proofs

5.6.1 Proof of Proposition 5.3.1

Let (lj , ϕj)j be the eigensystem associated to Ta. For any vector u ∈ RN we have:

Ωsu =
N∑

k=1

[
αlk < ϕk, u > ϕk + (1− α)λ̂k < φ̂k, u > φ̂k

]
.

Since (φ̂k)k=1,...,N and (ϕk)k=1,...,N are two orthonormal basis, each ϕk can be re-written in the basis
made of the (φ̂k):

ϕk =
N∑

j=1

< ϕk; φ̂j > φ̂j

Then:

Ωsu =
N∑

j=1

[
αlj <

N∑
k=1

< ϕj , φ̂k > φ̂k, u > (
N∑

k=1

< ϕj , φ̂k > φ̂k) + (1− α)λ̂j < φ̂j , u > φ̂j

]

=
N∑

j=1

[
(1− α)λ̂j < φ̂j , u > φ̂j +

N∑
k=1

(< φ̂k, ϕj > αlj < φ̂k, u >)(
N∑

k′=1

< ϕj , φ̂k′ > φk′)
]

=
N∑

j=1

[
(1− α)λ̂j < φ̂j , u > φ̂j +

N∑
k′=1

N∑
k=1

< φ̂k, ϕj > αlj < ϕj , φ̂k′ >< φ̂k, u > φ̂k′

]

=
N∑

j=1

[
(1− α)λ̂j < φ̂j , u > φ̂j

]
+

N∑
j=1

N∑
k′=1

N∑
k=1

[
< φ̂k, ϕj > αlj < ϕj , φ̂k′ >< φ̂k, u > φ̂k′

]

=
N∑

j=1

[
(1− α)λ̂j < φ̂j , u > +

N∑
k′=1

N∑
k=1

< φ̂k, ϕk′ > αlk′ < ϕk′ , φ̂j >< φ̂k, u >
]
φ̂j .

Taking u = φ̂j in the former expression we get:

Ωsφ̂j = {(1− α)λ̂j +
N∑

u=1

αlu < ϕu, φ̂j >
2}φ̂j .

So, the φ̂j are also eigenvectors for Ωs and the eigenvalues of Ωs are:

(1− α)λ̂j +
N∑

u=1

αlu < ϕu, φ̂j >
2 .



Hence, the solution as
∗ of Ωsa

s
∗ = µ is given by:

as
∗ =

N∑
j=1

1

(1− α)λ̂j +
∑N

u=1 αlu < ϕu, φ̂j >2
< µ, φ̂j > φ̂j .

Considering:

q(α, λ̂j) =
λ̂j

(1− α)λ̂j +
∑N

u=1 αlu < ϕu, φ̂j >2

we see that shrinkage techniques can be considered as a first-order regularization scheme.

5.6.2 Proof of Proposition 5.4.1

By using Bayes’ Theorem and by using Π and R̄ without distinction, we have

pdf(µ|Π) ∝ pdf(Π|µ)pdf(µ).

Hence,

pdf(µ|Π) ∝ exp{−1
2
(R̄− µ)′T Ω̂−1(R̄− µ)} ×

exp{−1
2
(Pµ− V )′F−1(Pµ− V )}

∝ exp{−1
2
(µ− ER)′(V R)−1(µ− ER)},

where ER and V R are determined respectively by

µ′(V R)−1µ = µ′T Ω̂−1µ+ µ′P ′F−1Pµ

⇔ tr(µµ′(V R)−1) = tr(µµ′T Ω̂−1) + tr(µµ′P ′F−1P )

⇒ (V R) =
(
T Ω̂−1 + P ′F−1P

)−1

and

µ′(V R)−1ER = µ′T Ω̂−1R̄+ µ′P ′F−1V

⇒ ER =
(
T Ω̂−1 + P ′F−1P

)−1(
T Ω̂−1R̄+ P ′F−1V

)
.

By denoting α for 1
T and if we write Π instead of R̄ (since R̄ is a consistent estimator of Π) we get

the results in (5.4.2.1).

�



Conclusion

It is surprising to see how finance can offer to the econometrician numerous pertinent problems
with complex theoretical implications. For instance, as shown in the last chapter, Inverse Problems
theory provides an elegant reading of portfolio allocation problems. This approach is not really new,
but writing explicitly those links has allowed us to draw a clear view of usual allocation methods from
a regularization point of view. We clarified the Bayesian nature of some methods (known for long by
the practitioners) with original results and potentially open the way for new methods.

Our main financial focus has however been the study of Hedge Funds. This has implied a huge
empirical work. The recent global financial turmoils have led to future dramatic changes in their
monitoring and their regulation. The goal of the empirical part of this work was however to enhance
the understanding of the imperfect set of information available in databases. Maybe in the future,
those databases will be in turn improved and deeply structured. In this case, I hope that this work
would be a useful contribution. Nevertheless, working on an imperfect, biased set of data is both the
nightmare and the pleasure of an econometrician! Therefore, we particularly insist on the importance
of censorship under its various forms. First, nonparametric estimation greatly improves the analysis,
and the use of covariates accounts for a cohort effect that captures most of the information for the
explanation of Hedge Funds lifetimes. But most of all, a crucial feature is that Hedge Funds may have
several reasons to exit from a database, not only because of failure. We confirm this old academic
intuition by providing new empirical evidences. Consequently, it is pertinent to replace the usual
single-risk approach by a competing-risks model that allows to estimate precisely the behaviors of
the two competing reasons of exit, failure and...success! Further work (on identifiability conditions,
heterogeneity, etc.) would however be needed to complete this approach.

Our main financial contribution has been to prove the relevance of introducing the concept of endo-
geneity in Hedge Funds study. Many (if not all) models developed in the literature assume exogenous
explanatory variables, conditional duration models and dismiss endogeneity in Hedge Funds studies.
This is even more pronounced in the analysis of their lifetimes and their survival. We have provided
strong evidence for the contrary: endogeneity is a topic of utmost interest in financial studies. By
nature, Hedge Funds are in this respect a wonderful playground to test such ideas. The impact of
the lockup variable on the lifetimes of the funds is a first example. But even for this simple variable,
we gave estimation and sharp figures for effects that have, up to our knowledge, only been discussed
theoretically. We hope that this leads the way for other studies in the same spirit.
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The fact that endogeneity is simply left aside in studies is not surprising since the concept of endogene-
ity is neither easy to define nor to understand. Endogeneity is even hard to detect, or to disentangle
from subtle concepts like causality or counterfactuality. The theoretical part of this work is a first
step towards a better understanding of endogeneity in a dynamic context. The heart of this work was
to present two classes of models for stochastic processes with endogenous variables, treated with the
instrumental variables method. We reach in a case a dynamic extension of separable model through
a generalization of the standard Doob-Meyer decomposition of semi-martingales. The case of dura-
tion model is original in the sense that we observe that using a change of time is compulsory in this
situation. As in the usual case, the functional parameters of interest are here again characterized as
solutions of (potentially sophisticated) integral equations. We have been mainly concerned by mod-
elling and a lot of work has to be done to build a whole estimation framework (estimation procedures,
practical aspects, limit properties, etc.). Unfortunately, many objects that have been introduced in
our analysis cannot be estimated through their present expression. But I would be happy if one day,
someone could exploit this novel framework to develop the concepts introduced here.
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Appendix A

Appendix

As this work lies at the confluence of various fields of literature, we give in this section some mathemat-
ical and financial complements, to make the concepts used in this manuscript more understandable.
We will review some fundamental properties and definitions on stochastic processes (Section A.1) and
inverse problems (Section A.2). Additionally we will sum up the basics of estimation in duration
models (Section A.3). Finally, we provide a financial glossary and a more precise description of the
hedge fund industry (Section A.4).

A.1 Stochastic processes: complements

A filtered probability space is a probability space (Ω,F ,P) with a filtration (Ft)t≥0 that is to say
an increasing family of σ-algebras that are all sub-algebras of F . A probability space is complete if
∀F ∈ F such as P(F ) = 0, then f ∈ F as soon as f ⊂ F . A complete filtered probability space is said
to satisfy the usual conditions if:

• F0 contains all the P-null sets of F ;

• the filtration (Ft)t≥0 is right-continuous i.e. Ft =
⋂

s>t Fs.

In continuous time, a stochastic process (Xt)t≥0 on (Ω,F ,P) taking its values in (H,H) (called
the state space most of the time), is a family of random variables such as for each t, Xt is a mapping
between (Ω,F) and (H,H). For a given w ∈ Ω, t 7→ Xt(w) is a trajectory of the process. A process is
said to be continuous (respectively right-continuous, left-continuous, increasing) if P-almost
surely, for events w ∈ Ω, the trajectories Xt(w) are continuous (respectively right-continuous, left-
continuous, increasing). In the same way, a process is said to be càdlàg if P-a.s. its trajectories are
right-continuous with left limits.

X is said to be measurable if (t, w) 7→ Xt(w) is measurable as a map from ([0;∞[×Ω;B0

⊗
F)

to (H,H). Moreover, the process is said to be adapted if it is measurable, and for t ∈ R, Xt is
Ft-measurable as a mapping from (Ω,F) to (H,H). Intuitively, a process is adapted if its value at t
may be calculated with the corresponding filtration at date t, i.e. all the available information at date
t. In particular, an adapted counting process would be piecewise deterministic.
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X is said to be progressive or progressively measurable if for t ∈]0;∞[, (t, w) 7→ Xt(w) as a
mapping from ([0; t]× Ω;B([0; t])

⊗
Ft) to (H,H) is measurable. X is said to be predictable when

X0 is F0-measurable and that (t, w) 7→ Xt(w) as a mapping from (]0;∞[×Ω;B+

⊗
F) to (H,H) is

measurable with respect to the the σ-algebra of predictable sets P∫ which is the sub σ-algebra of
B+

⊗
F generated by:

]t;∞[×A with t ∈]0;∞[, A ∈ Ft.

It can also be generated by the segments of [0;∞[×Ω, of the form: [s; t]×A, ∀s, t, 0 ≤ s ≤ t <∞ and
A ∈ Fs. Intuitively, when a process is assumed to be predictable, its value at t can be calculated with
all the information anterior to t that is on [0; t[.

A predictable process is progressive, measurable. A progressive process is adapted. A process which
is left-continuous and measurable is predictable. A process which is right-continuous and adapted is
progressive.

A stopping time τ is said to be predictable if τ > 0 is the limit of an increasing sequence of stopping
times τn such that τn < τ . An accessible stopping time τ is such that there exists a sequence
predictable τn of stopping times, such that the probability that there exists n0 ∈ N such that τ = τn0

is equal to one. Conversely, a stopping time τ is totally inaccessible if no such sequence of stopping
times exists. In other terms, the probability that τ = τ ′ is equal to zero for each predictable time τ ′.



A.2 Inverse Problems: complements

A space is locally compact if each point has a compact neighborhood. A subspace is relatively
compact is a subset whose closure is compact.

A.2.1 Compact operators

An operator K1 : E → F is said to be compact between two Banach spaces E and F as soon as
K(BE) is relatively compact in F (BE being {x ∈ E|||x|| ≤ 1}) i.e. K(BE) is compact in F . An other
definition is that for any bounded sequence {xn} of EN, {Kxn} has converging subsequences in F .

If K(E ,F) is the vector space of compact operators, K(E ,F) is closed in the space of linear operators
L(E ,F) and contains all the finite rank operators. In particular, K compact is equivalent to
K∗, KK∗, and K∗K compact. It implies also that K is continuous and bounded (equivalence in the
linear case).
Moreover, if F is a Hilbert space, any compact operator K : E −→ F is limit in L(E ,F) of a sequence
of operators of finite rank. This property is the source of main regularization techniques that will be
explored throughout the following sections. How a compact operator looks like? We have already seen
that finite rank operators are compact. An easy characterization is through the Hilbert-Schmidt
condition (henceforth H-S) since H-S operators are compact and are often met in common problems.

The study of compact operators is more thrilling in infinite dimension. In finite dimension, an operator
is one-to-one as soon as it is surjective. So the injectivity is the only notion to check in order to assess
the invertibility of the operator. In infinite dimension however, a bounded operator may be surjective
without being injective and reciprocally. What will help us is the precise study of the behavior of the
operator as expressed before.

However when dim(E) = ∞, then for T = K compact, 0 ∈ Sp(K) where Sp(K) is the spectrum of
K. We have moreover either one of the three situations:

1. Sp(K) = {0}

2. Sp(K) = {0} is finite

3. Sp(K) = {0} is a sequence that tends to 0.

We will now suppose that dim(E) = +∞. In fact, there is a more convenient object to define which is
the singular value. When K is self-adjoint (still compact, linear) its eigensystem exist and is charac-
terized by the sequence (λn, φn) of eigenvalues λn and eigenvectors such that Kφn = λnφn ∀n ∈ N.
K may be rewritten:

Kφ =
∞∑

n=1

λn < φ;φn > φn.

Unfortunately, such an eigensystem do not exist for an operator K which is not self-adjoint. The
singular system generalizes this definition. For K : H → G a compact operator, linear, between two
Hilbert spaces, the roots of the eigenvalues of K∗K are the singular values. The advantage of compact
operators is that their spectrum is discrete and that it may be characterized easily. A compact operator

1Henceforth, the generic operator T will be noted K when it is assumed to be compact.



is injective iff all its singular values are different from 0. If it is the case, 0 is not an eigenvalue of
K∗K but may be one of KK∗. (λj , φj , ψj) is called a singular system.

A.2.2 Least-squares solutions and inverse problems

A.2.2.1 Generalities

It’s also important to view inverse problems through the study of best-approximate solutions. Let’s
recall that if T : H → G is a bounded linear operator, f ∈ H is the best-approximate solution of 1.6 if
f is a least-square solution of 1.6 and if :

||f || = inf{||φ|| | φ is a least-square solution of 1.6}.

The Moore-Penrose inverse of T generalizes the notion of inverse operator and is defined as the
operator mapping y with the corresponding best-approximate solution. More precisely, it’s the linear
extension of T

−1
to the space R(T )+̇R(T )⊥ (then defining D(T †)) with: T := T |Ker(T )⊥ → R(T ).

Thus Ker(T †) = R(T )⊥. An important property is that T † is bounded (or continuous as linear) if
and only if the range of T is closed. The Moore-Penrose inverse is closely related to inverse problems
and stability topics. An important property is that for y ∈ D(T †, f is a least-squares solution of 1.6
iff we have:

T ∗Tf = T ∗y (A.1)

Equation (A.1) is called the normal equation and will play a crucial role in many regularization
procedures. A consequence of this is that:

T † = (T ∗T )†T ∗ (A.2)

Returning to linear compact operators, T = K with non-closed range, 1.6 is ill-posed and the best
approximate solution does not depend continuously on y. If (λn, φn, ψn) is the singular system of K
(linear compact) we have:

K†y =
∞∑

i=1

< y, φn > ψn

λn

for y ∈ D(K†) iff:
∞∑

n=1

| < y, φn > |2

λ2
n

< +∞ (A.3)

Equation (A.3) ensures then that y ∈ D(K†) and is called the Picard criterion, which will be at
the heart of the definition of classes of regularity. This criterion ensures that the Fourier coefficients
< y, φn > decay sufficiently fast with respect to the sequence of λn. This is the first time that we
can observe that the relative properties of the operator (through the λn) are intrinsically linked to y
(through < y, φn >) to control stability. The error in y that affects < y, φn > for small eigenvalues is
greatly amplified by the 1/λn factor.

A.2.2.2 Order-optimality

At this point, sufficient information is given to understand the aim and the construction of regular-
ization techniques. But an evident problem is the control of the nature of the convergence of the
solution of the regularized problem towards the true solution. We could ask oneself whether it is more



interesting to control ||fα − f†|| as α → 0 or ||fδ
α(δ,yδ) − f†|| as δ → 0 where fδ

α(δ,yδ) = Rα(δ,yδ)y
δ.

The first one is more tricky to deal with as it will involve the exact data and the regularization operator.

In fact, the quantity ||fδ
α(δ,yδ) − f†|| cannot be bounded by any function of only δ that tends to

zero. Thus the convergence of those quantities cannot lead to uniform rates in ill-posed situations.
Moreover, we can observe that:

||fδ
α(δ,yδ) − f†|| ≤ ||fδ

α(δ,yδ) − fα(δ,yδ)||+ ||fα(δ,yδ) − f†||

that shows that the two rates are however closely related. The problem is that as we cannot have access
to a uniform bound for the convergence, we face rates of convergence that can be arbitrarily slow.
If we want to obtain such bounds or to improve our control the speed of convergence we need more
assumptions, or to restrict ourselves to specific subspaces or subsets. The conclusion is that speaking
of convergence rate of regularized solutions for ill-posed problems is only possible on subspaces of
D(T †) : defining those subspaces is equivalent as we will see to make a priori assumptions on the
exact data or the true solution. Generally, subsets are such as:

{f ∈ H | f = Lw, ||w|| ≤ ρ}

with L is an operator between Hilbert spaces, with its range in H, which is bounded linear. It is useful
to consider L = (T ∗T )µ for µ > 0. The reasons for this are for the moment rather unclear. This
allows to define however sets that are called source sets:

Hµ,ρ := {f ∈ H|f = (T ∗T )µw, ||w|| ≤ ρ} and Hµ :=
⋃
ρ>0

Hµ,ρ.

In fact, Hµ is (easily) the range of the operator (T+T )µ. If we assume that the true solution of our
initial problem is in a set Hµ,ρ, we say that f has a source representation and this assumption is called
the source condition. In fact, in many situations, T is a smoothing operator, specially when T has
an expression through an integral equation. In those cases, it is clear that the source condition can
be interpreted as a smoothness condition (as for instance the more general translation of f being a
function of Ck-class).

When T = K is compact, we can again relate the Hµ sets to spectral theory. It can be shown that if
K compact, with a corresponding singular system (λn, φn, ψn), if µ > 0, we have:

K†y ∈ Hµ = R((K∗K)µ) ⇐⇒
∞∑

n=1

| < y;ψn > |
λ4µ+2

n

<∞ (A.4)

Condition A.4 is the Picard criterion when µ = 0 and imposes a condition on the speed at which the
Fourier coefficients decrease. But the greater µ, the stricter is this condition. We see that µ starting
from 0 and increasing define a scale of conditions. This term is important as we will see it later.
In summary, it is difficult to conclude on the speed of convergence of solutions of ill-posed problems
without restricting oneself to specific subsets of solutions, defined via the smoothness of the true so-
lution. Doing this, we get a precise and accurate control on the speed of convergence of the solution
(which then depends on this condition). If we assume that the f† ∈ Hµ = R((T ∗T )µ) in the context
of an ill-posed problem (T non-closed), then the rate of convergence of the regularization procedure
is O(δ

2µ
1+2µ ).



Definition A.2.1. For an ill-posed problem (i.e. R(T ) non-closed), a regularization {Rα} for T † and
α a parameter choice rule for µ, ρ > 0 and y ∈ THµ,ρ.

• (Rα, α) is said to be optimal in Hµ,ρ if ∀δ > 0:

∆(δ,Hµ,ρ, Rα) = δ
2µ

1+2µ ρ
1

1+2µ .

• (Rα, α) is said to be of optimal order in Hµ,ρ if ∃c > 0 such as :

∆(δ,Hµ,ρ, Rα) ≤ cδ
2µ

1+2µ ρ
1

1+2µ ∀δ > 0.

With µ increasing, the source sets are smaller (stricter condition), and the convergence rates become
faster. In fact, we have a more precise result when the parameter choice rule is of the form α(yδ, τδ) =
ατ (yδ, δ) and depends on a bound greater than δ as τ is assumed to be τ > 1. This allows to derive
the following theorem:

Theorem A.2.1. If ∀τ > τ0 ≥ 1, (Rα, α)) is of optimal order in Hµ,ρ for a given µ > 0 and ∀ρ > 0,
then all regularization methods (Rα, ατ ) with τ > τ0 ≤ 1 converges for each y ∈ R(T ) and are of
optimal order for all source set Hν,ρ where 0 < ν ≤ µ and ρ > 0.

This is important since it permits to define the qualification of a regularization method. The qual-
ification µ0 of a method is the supremum of the set of parameters µ where the regularization is
order-optimal.

A.2.3 Regularization methods

We present briefly the main regularization methods. We do not aim to be exhaustive and refer to
Engl et al. (1996) and Kaltenbacher et al. (2008) for a complete treatment.

A.2.3.1 Regularization schemes

An ill-posed inverse problem may be solved by regularization schemes. For a compact, one-to-one op-
erator K : H1 → H2 in the equation Ka = µ, a regularization scheme involves a sequence of operators
Rα indexed by a positive real parameter α known as regularization parameter. As approximation of
the solution, we then take aα = Rαµ which can be computed in a stable way since Rα is assumed to
be continuous. The regularization parameter α must be chosen such that, as the noise in the data µ̂
goes to zero, the regularized solution aα converges to a†. Regularization schemes can be of first or of
second order.

The regularization scheme of first order is of the form:

Rαµ =
∞∑

j=1

q(α, λj)
λj

< µ,ψj > φj

with:

q : R∗+×]0, ||K||] → R , ∀λ : |q(α, λ)| ≤ c(α)λ , lim
α→0

q(α, λ) = 1 , c(α) > 0



The regularization scheme of the second order allows to write Rα as the product Rα = AαK∗ with
Aα self-adjoint and bounded for a given α and:

∀λ : |q(α, λ2)| ≤ d(α)λ2 , d(α) > 0 , ||Aα|| ≤ d(α)

Aαφ =
∞∑

j=1

q(α, λ2
j )

λ2
j

< φ, φj > φj

A.2.3.2 Spectral cut-off

The equation Kf = y, with f ∈ E and y ∈ F , cannot be satisfied exactly if y /∈ R(K). Hence, it
seems natural to transform y by the orthogonal projection onto R(A). However, when y is affected by
noise there is no guarantee that < yδ, ψj > converges to zero rapidly to satisfy Picard criterion given
in Equation A.3.

The idea of the spectral cut-off is to replace the original problem with a projected one, where the
projection is on a space with dimension smaller than dim(F). Let Pk be the finite-dimensional
orthogonal projector on span{ψ1, . . . , ψk}, the spectral cut-off approximation of the problem Kf = y

is Kf = Pky, with f ⊥ Ker(K). This problem has a unique solution that we denote with fα. We
introduce a regularization parameter α defined as a function of k: α = α(k) := sup{α̃ ∈ R;λk ≥

√
α̃}.

Hence, the spectral cut-off approximated solution writes:

fα =
∑

j;λj≥
√

α

1
λj

< y,ψj > φj .

Spectral cut-off is a first-order regularization scheme and corresponds to set q(α, λ) = 1λ≥
√

α, where
1 denotes the indicator function.

This technique consists in eliminating the smallest eigenvalues. The sum is reduced to a finite sum up
to a sufficient order after which the eigenvalues become too noisy. It seems to be particularly adapted
in our framework since as we stressed before, the problem comes from the inversion of eigenvalues of
the sample covariance matrix.

Let’s precise that in the finite-dimensional case, the convergence stated in the Picard criterion is
useless. Consequently, the projected equation Kf = Py always has a solution that writes :

f = f0 +K†y

where K† denotes the Moore-Penrose inverse of K, f0 ∈ Ker(K) and spectral cut-off is not necessary.

A.2.3.3 Tikhonov regularization

Tikhonov regularization is a method introduced by Tikhonov in order to remedy the instability of
the solution (even the best-approximate solution) of an inverse problem. The idea of this scheme
is to control simultaneously the norm of the residual and the norm of the regularized solution (see
Tikhonov and Arsenin (1977)). A penalty is added to the norm of the solution to compensate the
non-invertibility of T ∗T . The solution f0 is then the solution of:

f0 = argminf ||Tf − yδ||2 + α||f ||2 (A.5)



where α is the regularization parameter. The right term ensures the regularity and the smoothness
of the solution. It’s easy to recover a closed form expression for the estimated solution as mα : f 7→
||Tf − yδ||2 + α||f ||2 is strictly convex (∀α > 0) and has a Fréchet-derivative equal to:

(mα
f )′f̃ = 2 < Tf − yδ, T f̃ > +2α < f, f̃ > .

The first order condition (mα
f )′ = 0, ∀f̃ ∈ H leads to 2 < T ∗(yδ − Tf), f̃ >= α < f, f̃ > which gives

finally:

f̂α = (αI + T ∗T )−1T ∗yδ. (A.6)

Immediately, with the previous notations, this reads also: Fα(x) = (α+x)−1. The spectral expression
for the estimated function is thus:

f̂α =
∞∑

n=1

λn

α+ λ2
n

< yδ, ψn > φn.

Using the singular value decomposition of K, the Tikhonov regularized solution can be rewritten as

fα =
∞∑

j=1

λj

λ2
j + α

< µ̂, ψj > φj (A.7)

that makes clear that this regularization scheme simply consists in moving the spectrum of K∗K away
from 0 by a translation of α. With the previous notation, we get q(α, λ2) = λ2

α+λ2 , d(α) = 1/α and
Aα = (αI+K∗K)−1 that shows that Tikhonov regularization is a second order regularization scheme.
However, when K is self-adjoint the Tikhonov regularized solution takes the form fα = (K + αI)−1µ̂

since we do not have to project µ̂, but only to correct for the lack of stability of K−1. In this latter
case, the Tikhonov scheme becomes a regularization scheme of first order.

Formula (A.5) is very general and adapts directly for nonlinear operators (see below), whereas A.6 is
only suited for linear operators. We have the very important following theorem:

Theorem A.2.2. Let f̂α resulting from Equation (A.6) and y ∈ R(T ) which is observed from a noisy
version yδ such as ||y − yδ||G ≤ δ. If the parameter α is chosen as follows:

1. limδ→0 α(δ) = 0

2. limδ→0 δ
2/α(δ) = 0

we have then limδ→0 f̂α(δ) = T †y

This is a very general condition that will be often met under various forms. Technically, the proof
of the theorem only requires in that δ2/α(δ) remains bounded with δ → 0. The qualification of the
Tikhonov regularization is µ0 = 1 (see Section A.2.2.2). This means that the best rate achieved by a
Tikhonov regularization is a O(δ

2
3 ). In a linear ill-posed inverse problem, a faster rate of convergence

may not be attained. There is a saturation effect which makes that even under stringent assumptions
on the smoothness of the estimated function, the method itself yields a limitation effect on the speed
of convergence. Such an observation however concerns a-priori parameter choices. For a-posteriori
parameter choice rules, see Engl et al. (1996) (Chap.5,p.121).



A.2.3.4 Tikhonov with modified penalty

Of course the choice of the penalty may be modified depending on assumptions we may formulate on
the solution: smoothness or proximity to a specified function. A first idea could be to replace ||f || by
||f − f∗|| where f∗ is a given function. f̂α becomes easily :

f̂α = (αI + T ∗T )−1(T ∗yδ + αf∗).

An other alternative is to modify ||f || and to replace if by ||Lµf || with µ > 0, where L is a differential
operator which is more adapted to the problem and takes into account the needed smoothness of a
given transform of the solution (e.g. a derivative). It is usual to consider Lµ = (T ∗T )−µ and then f̂α

becomes:
f̂α = (α(Lµ)∗(Lµ) + T ∗T )−1(T ∗yδ).

A more general version of the Tikhonov regularization method, called Generalized Tikhonov, consists
in allowing for a more general specification of the penalty term. The optimization problem is replaced
by:

Fα(a) = ||Kf − yδ||2 + αG(f) (A.8)

where G : E → R is a nonnegative functional. The most common choice for G is

G(f) = ||Lf ||2

where L : E → F is a linear operator. When E is an infinite dimensional space, L must be unbounded
and it is usually a differential operator We talk about Tikhonov regularization in the Hilbert scale
induced by L when L is a densely defined, unbounded, self-adjoint and strictly positive operator in an
Hilbert space H1. This choice forces the solution fα to be smooth. When E is a finite-dimensional
space, the operator L is simply a matrix; in particular, if L is full-column rank G(f) is the generalized
norm in the metric induced by the matrix L′L. The generalized Tikhonov regularized solution fα takes
the form:

fα = (αL∗L+K∗K)−1K∗yδ

=
∑

j

λj

λ2
j + α

∑
k l

2
k < ϕk, φj >2

< yδ, ψj > φj (A.9)

=
∑

j

λj

λ2
j + α||Lφj ||2

< yδ, ψj > φj (A.10)

where (lj , ϕj , ρj) is the singular value decomposition of L and the last equality is true only if Ker(K) =
{0}. The regularized solution depends not only on the eigenvalues of the operator K, but also on the
norm of the operator L. When L = I we clearly find (A.7).

When the operator K : E → E in the inverse problem is self-adjoint and µ̂ ∈ E , we take an unbounded
self-adjoint linear operator L and the generalized Tikhonov solution is

fα = (αL+K)−1µ̂

=
∑

j

1
λ2

j + α||Lφj ||2
< yδ, φj > φj . (A.11)



A.2.3.5 Iterated Tikhonov

All the methods that have been presented now are direct in the sense that the solution is computed
through a single step. A whole class of alternative methods uses iteration processes to estimate the
solution of the problem. This is the principle of iterated Tikhonov regularization, which is briefly
presented here. Iterated Tikhonov applies easily to linear operators, whereas the idea of iterative
methods will be mainly used in situations where there a nonlinear operator is involved.

To illustrate these procedures, we begin by exploring how the last method adapts to iterative schemes.
Suppose that we start with f̂0 = 0 and apply a Tikhonov regularization in the first step:

f̂1
α = (αI + T ∗T )−1(T ∗yδ + αf̂0).

At a given step k ∈ N∗ if we have an estimator f̂k
α, the next estimator at step k + 1, we get:

f̂k+1
α = (αI + T ∗T )−1(T ∗yδ + αf̂k

α).

It can be shown that f̂k
α may be directly estimated as:

f̂k
α = (αI + T ∗T )−k(T ∗T )−1[(αI + T ∗T )k − αkI]T ∗yδ.

A.2.3.6 Landweber iteration

Iterative methods consider that the direct expression of the problem is maybe more intuitive than the
inverse one, and iteratively update a current estimator f̂k through f̂k+1 = f̂k + Rk(f̂k, y

δ) where Rk

depends on the chosen method that will principally use the operator or its dual. The general outline of
those methods is to start the process with a given function, and to sequentially update an estimator in
order to approach the true solution. They exhibit a self-regularizing effect acting as the stoping crite-
rion of the iteration plays the role of the regularization parameter. The idea is that as fk is far from the
true solution, y−TFk is huge and this residual is much greater than the data error. The algorithm has
then the good descent direction. Iterations are stopped when the residual becomes inferior to the error.

Among iterative methods, Landweber iteration minimizes ||Tf − y|| using a gradient method. The
descent algorithm is along the direction −T ∗(T f̂k − y) at a given step k of iteration. For a given
m > 0, the iteration procedure is :

f̂k+1 = f̂k −mT ∗(T f̂k − y).

Recursively, it is easy to obtain:

f̂k =
k∑

i=0

m(I −mT ∗T )iT ∗y.

m is a relaxation parameter that satisfies 0 < m < 1
||T ||2 . When ||T || ≤ 1, m is useless and the

iteration can be written under the form f̂k = f̂k−1 − T ∗(T f̂k−1 − y). For a fixed index k, f̂δ
k depends

continuously on the data, and cannot arbitrarily diverge at a given level of noise. If ||yδ − y|| ≤ δ, we
have ||f̂k − f̂δ

k || ≤
√
kδ.

The iteration is stopped before
√
kδ becomes too high (i.e. when k is sufficiently weak, this concept is

called semi-convergence). The discrepancy principle specifies to stop the iteration for the first index



k = k(δ, yδ) such that : ||yδ − T f̂δ
k || ≤ τδ for a fixed τ > 1. Contrary to Tikhonov, there is no

saturation effect. Landweber iteration leads to a huge number of iteration (even if the operator need
not to be inverted), and practitioners will prefer other iterative methods.
Fα is then ”a Fk” since the regularization parameter is now related to the stopping index of the
iteration. Deriving from the Landweber method is the semi-iterative procedures. Rather than using
the last iteration, all the previous estimators are mixed. At step k, f̂k is given by:

f̂k =
k−1∑
j=0

w
(k)
j f̂j −mkT

∗(T f̂k−1 − y)

where
∑k−1

j=0 w
(k)
j = 1. Here again, the index k plays the role of the regularization parameter. In those

cases, Fk is a polynomial of degree k − 1. As a particular case, the ν-methods use only two previous
iterations and f̂k is given by :

f̂k = wkf̂k−1 + (1− wk)f̂k−2 −mk(T f̂k−1 − y).

A.2.3.7 Nonlinear Landweber

Nonlinear Landweber iteration is the adaptation of Landweber methods for nonlinear problems. Pre-
viously for a linear operator T , we had:

f̂k+1 = f̂k − T ∗(T f̂k − y)

where T ∗(T f̂k− y) was the direction for the gradient taken in f̂k of f 7→ ||y−T f̂k||2. If T is nonlinear
and T ′ is its Fréchet-derivative, this gradient becomes f 7→ T ′∗

f̂k
(y − Tf). Consequently, the nonlinear

Landweber iteration update is:
f̂k+1 = f̂k − T ′∗

f̂k
(T f̂k − y).

When T is linear, T = T ′ and the former expression generalizes the approach. To ensure convergence
and control on its rate, strong assumptions have to be made on T since at each step the operator T ′

f̂k

is modified (via f̂k) and it is difficult to constrain the {f̂k} sequence to belong to given smoothness
spaces. Kaltenbacher et al. (2008) gives conditions for the convergence, which can only be obtained
locally, whether data is exact or noisy.

A.2.3.8 Other methods

Many other methods exist. The Newton-type methods rely on the use of the Fréchet-derivative. The
initial equation Tf = y is iteratively linearized around the current estimated solution and the new
problem is solved. Provided that y ≈ Tf ≈ T f̂k + T ′

f̂k
(f − f̂k), the idea is to iterate and find f̂k+1

such as y ≈ T f̂k + T ′
f̂k

(f̂k+1 − f̂k), i.e.

T ′
f̂k

(f̂k+1 − f̂k) = y − T f̂k. (A.12)

We recover here an other linear inverse problem as T ′
f̂k

is a linear operator. But if T is compact then
T ′

f̂k
is also compact and (A.12) may also be ill-posed. Levenberg-Marquardt method solves A.12 with

the conjugate use of Tikhonov regularization. This is a particular choice which specifies the method
but any regularization method for linear problems could be chosen alternatively.
Landweber methods can also be extended or modified. Regularizing in Hilbert scales, the adjoint
of the Fréchet derivative is replaced by an operator depending on the considered Hilbert scale. In



iteratively regularized Landweber methods, the usual iteration is modified with a term depending on
f̂δ

k , inspired from Newton-methods. This modifies in particular the condition on τ in the stopping
criterion. Adaptations are even possible when T ′ is not available.

Concerning Newton-type methods, iteratively regularized Gauss-Newton methods are the extension
of Newton-type methods in the same fashion than for Landweber iteration procedures, and have a
lot of generalizations. See Kaltenbacher et al. (2008) for a comprehensive review of those methods,
including other kind of procedures such as multilevel, multigrid, level set methods, that are beyond
the scope of this presentation.



A.3 Single risk estimation in duration models

We have already expressed the importance of censorship, which can be of two kinds. In our study,
we face most of the time a right-censorship2. For dead funds, the duration can be observed. For the
other ones, their potential exit cannot be observed and then their lifetime duration is truncated. The
second kind of censorship is due to the fact that we observe only discrete durations (in months).

A.3.1 Parametric estimation

Suppose that the durations have a continuous support, and are potentially censored. Working with
a parametric family for the density fθ where θ is the parameter to be estimated, we get that a non-
censored observation t has a contribution to the likelihood equal to fθ(t). However, for a censored
observation t, the contribution to the likelihood is equal to:∫ ∞

t

fθ(u)du.

The total likelihood for a set of observations (τi)i∈[1;n] with a censorship indicator (δi)i∈[1;n] (with δi
equal to 1 if the observation is censored, 0 otherwise) is equal to:

L(τ1, . . . , τn, θ) =
n∏

i=1

(fθ(τi))δi

(∫ ∞

τi

fθ(u)du
)1−δi

. (A.13)

Then, a maximum likelihood estimation can be set up to estimate the parameters that fit best the
distribution.

The general form of the likelihood is easy to derive in the most general case. We note generically
f(t, x, θ) the density, λ(t, x, θ) the hazard function and S(t, x, θ) the survivor function, depending on
time t, observation of the covariate x and parameters θ (we suppose that x includes the possibility to
give information on censorship). The log-likelihood is:

log(L(τ1, . . . , τn, x1, ..., xn, θ)) =
∑
i∈Iu

log(f(τi, xi, θ))−
∑
i∈Ic

log(S(τi, xi, θ))

=
∑
i∈Iu

log(λ(τi, xi, θ))−
∑

i

log(S(τi, xi, θ)) (A.14)

where Ic is the set of censored observations, Iu the uncensored ones. The second expression can be
obtained thanks to the link between the density, survivor and hazard function, as f(t) = λ(t)S(t).

We could have observed durations that are discrete (which is a second kind of censorship). We face this
situation since our Hedge Fund lifetimes are estimated as a number of months. A duration τ means
that the Hedge Funds lifetimes has failed during the time interval [τ ; τ+1[. We replace in the likelihood
of expression (A.13) the contribution of uncensored data fθ(ti), by the quantity

∫ τi+1

τi
fθ(u)du. Then

the likelihood to be maximized becomes:

L(τ1, . . . , τn, θ) =
n∏

i=1

(∫ τi+1

τi

fθ(u)du
)δi
(∫ ∞

τi

fθ(u)du
)1−δi

.

2We could also include the problem of left-censored data when we are doubtful on the exact beginning of the lifetime,

but such an extension is not done here. On this point see the work of Patilea and Rolin (2006).



If Sθ(t) =
∫ +∞

t
fθ(t′)dt′ the likelihood becomes:

Ldis((ti)i∈[1;n], θ) =
n∏

i=1

(Sθ(ti)− Sθ(ti + 1))δi(Sθ(ti))1−δi

A.3.2 Nonparametric estimation

One first estimates Λ(t) (or at least its increments) and then one tries to find a smooth expression for
its derivative in order to get λ̂(t) (see Ramlau-Hansen (1983)). Suppose that we have an estimator
Λ̂(t) at dates 0 = τ0 ≤ τ1 ≤ . . . ≤ τn. With a gaussian kernel, λ̂(t) is estimated through :

λ̂(t) =
n∑

k=1

1√
2πhn

exp

(
− (t− τi)2

2h2
n

)
× (∆Λ̂(τi))

with hn an associated bandwidth. We can improve this formula by using boundary kernels: for the
terms corresponding to little values of τi (τi ≤ hn) we make the correction proposed by Li and Racine
(2006):

λ̂(t) =
n∑

k=1

1√
2πhn

exp

(
− (t− τi)2

2h2
n

)
× (∆Λ̂(τi))×

(
1{τi≥hn} +

1{τi<hn}

1 + Φ(− τi

hn
)

)
with Φ the cumulative function of the standard gaussian distribution. We have not yet defined how to
estimate the integrated hazard Λ(t). Several equivalent approaches are available. First, the Kaplan-
Meier estimator is a product-limit estimator. It is obtained by specifying that being alive at time t is
equivalent to being alive just before t and not dying at this date. Its expression is:

Λ̂KM (t) = −ln(ŜKM (t)) with ŜKM (t) =
∏

{j|τj<t}

(
1− fj

aj

)
where fj is the number of individuals failing at date τj (thus only uncensored individuals), and aj is
the total number of individuals which have attained at least τj , then including censored individuals.

An other possibility is to use the Nelson-Aalen estimator (see Kalbfleisch and Prentice (2002)) which
writes:

Λ̂NA(t) =
n∑

i=1

(1− δi)1{τi≤t}∑n
j=1 1{τi≤τi}

where δi = 1 if the observation is censored, 0 otherwise.

An other estimator is used in Couderc et al. (2008) which uses Gamma-Ramlau Hansen estimator. Its
expression is:

λ̂GRH(t) =
n∑

i=1

τ
t/hn

i exp(−τi/hn)

h
t/(hn+1)
n Γ( t

hn
+ 1)

× (∆Λ̂(τi))

where hn is again the smoothing parameter and δi the censorship indicator defined as above.



A.4 Hedge Funds: complements

A.4.1 Financial glossary

Alpha: estimated most of the time as the constant term of a linear regression of the historical returns;
more generally for a fund, it is often understood as the added value of the manager or as a proxy of
her ability.

Assets Under Management (AUM): total size of a fund, determined both by the in-flows of
money of the investors and by the market value of its assets.

Backtest(ing): “what-if” analysis of the historical behavior of a fund/trading strategy estimated on
the past, whereas the fund/the strategy was not existing at this moment.

Beta: estimated as the coefficient term of a linear regression of the historical returns; more generally
for a fund, it refers to its risk exposure towards risk-factors.

Capacity: assumed maximal size of a fund w.r.t. the market it invests in; if the size of the fund is
bigger than its capacity, there may be a risk for the fund to be too big to benefit from arbitrages of
the current investment strategy.

CAPM: Capital Asset Pricing Model ; model trying to explain how the risk (variance) of a financial
asset may be decomposed between systematic and residual risk. See Sharpe (1964), Fama (1968).

CFTC: Commodity Futures Trading Commission is an independent, federal agency in the United
States in charge of the regulation of commodity trading.

Directional Strategy: strategy that takes a pure bet on the direction (increase or decrease) of the
price evolution of a security, without hedging this position.

Efficient Portfolio: in the portfolio theory, efficient portfolios are defined as being optimal through
a mean-variance criterion as for a given return they are sought to have a minimal variance; their set
define the efficient frontier.

(Max) Drawdown: (maximal) continuous decrease in value of a stock or a fund; often measured as
a percentage of the last local maximum NAV.

Funds of Hedge Funds (FoF or FoHF): funds that invest in several other Hedge Funds; they
seek diversification without usual Hedge Fund strategies management; funds of funds of Hedge Funds
may also exist; minimum investment required are generally lower.

HFR: HFR (www.hedgefundresearch.com) is a company monitoring the global Hedge Fund industry,
selling Hedge Fund databases, industry reports, and indexes (both investable and non-investable).

High-Water Mark: highest value reached by a fund; used to estimate performance and sur-
performance fees. For two accounts of classes A (clients) and B (fund) whose values at month t



are At and Bt, let’s write HMWt the value of the High-Water Mark. For each t the total investment
capacity of the fund is At +Bt. Let ht be a predetermined hurdle rate and rt the return of the fund.
The HMWt value is computed through (see Darolles and Gouriéroux (2009)):

HMWt = max
0≤t′≤t

(
At′

t∏
k=t′

(1 + hk)
)
.

Between two resets of the accounts and with a sur-performance fees equal to f the accounts are
recursively defined through:

At+1 = At(1 + rt+1)− f [At(1 + ht+1]−HMWt]+

Bt+1 = Bt(1 + rt+1) + f [At(1 + ht+1]−HMWt]+.

Hurdle Rate: reference return above which (over-)performance fees are estimated; may be equal to
0, the LIBOR rate, etc.; generally predetermined and known in advance.

Leverage: ratio of debt used to expand an initial capital in order to raise the anticipated gains (or
losses) of a strategy; a leverage of 3 means that two thirds of the current portfolio are borrowed.

Lockup: period during which an investor cannot redeem her shares or withdraw her capital, just after
initial investment.

Long Position: buying a stock or a security (the investor expects an increase of its price).

Loss Carry Forward: fees collection scheme that is an alternative to the High-Water Mark; at month
t, LCFt ≤ 0 represents a cumulative negative performance, which is different from 0 when returns
are insufficient to compensate past losses. LCFt is computed through (see Darolles and Gouriéroux
(2009)):

LCFt+1 = −[LCFt +At(rt+1 − ht)]−

Between two resets of the accounts and with a sur-performance fees equal to f the accounts are
recursively defined through:

At+1 = At(1 + rt+1)− fAt[rt+1 − (Atht − LCFt)/At]+

Bt+1 = Bt(1 + rt+1) + fAt[rt+1 − (Atht − LCFt)/At]+.

NAV: Net Asset Value; this is the reference value of a share of fund calculated with the market value
of its assets, but after fees calculation.

NFA: National Futures Association; organization in the United States in charge of the regulation for
investors wanting to register as future traders.

Private Equity Funds: funds that invest in non-listed businesses, by opposite to stocks or liquid
financial products; they may invest in start-ups, new companies, non-listed companies needing financ-
ing, environmental or pioneering firms, distressed companies, etc.



Real Estate Funds: funds that invest in land, buildings, and real property of this kind.

Provision Account: fees collection scheme, different from High-Water Mark and Loss Carry For-
ward; uses a third account P such as the way the class B account is feeded is remaiend unchanged.
At each month t the value of the P account is noted Pt ≥ 0. Pt is such that LCFt + Pt equals at
each date Pt or LCFt, the other being equal to 0. If p is the fraction of investment allocated to the
provision account we have then:

LCFt+1 = −[LCFt + Pt + p(At + Pt)(rt+1 − ht)]−

Pt+1 = −[LCFt + Pt + p(At + Pt)(rt+1 − ht)]+

At+1 = (At + Pt)(1 + rt+1)− Pt+1

Bt+1 = Bt(1 + rt+1).

See Darolles and Gouriéroux (2009).

SEC: Security Exchange Commission; this is the federal office in the United States in charge of the
regulation and control of the financial markets.

Short Position: selling a stock or a security (the investor expects a decline of its price; the security
is generally not owned and must be borrowed under specific conditions.

TASS: Lipper TASS is the name of the commercial database set up by Lipper (www.lipperweb.com)
for qualified investors interested in monitoring the global Hedge Fund industry.

Top-Down Approach: starting from macro-economic forecasts or previsions, consists in specifying
markets, countries or sectors for investment; converse approach is bottom-up, where the focus is made
on stock-picking, with an individual analysis of securities.

Turnover: measures for a fund or a portfolio of assets the frequency or the proportion of the portfolio
that is changed in average at each redefinition of the composition of the portfolio/fund.

UCITS norms: Undertakings for Collective Investment in Transferable Securities ; set of norms
aiming at harmonizing and regulating European markets and funds; defined first in 1985; their first
goal was to simplify the process for a fund aiming to be promoted anywhere in Europe; UCITS IV
norms are currently negotiated.

A.4.2 Hedge Funds strategies

We adopt here the strategy classification and description of HFR available in HFR (2009). We focus on
the categorization of single funds. We give here the main strategies with some examples of refinements.
Such a classification may be difficult as sometimes overlaps exist (between Long-Short and Relative
Value strategies for example)

Equity Hedge-Long/Short Equity

ex: Equity Market Neutral; Fundamental Value; Fundamental Growth; Long Bias; Short Bias;



This constitutes the most frequent kind of Hedge Fund strategy. Equity Hedge or Long/Short Eq-
uity funds share with Alfred Winslow Jones’ first Hedge Fund the same philosophy. They identify
under-priced stocks that they buy, and over-priced stocks that they try to short-sell. Diversification
is sought by investing in several economies, sectors or markets. Use of beta and of leverage helps to
immunize the fund w.r.t. to market movements.

Objectives in terms of return, volatility, and market sensibility, depend deeply on the fund. Long-Only
Absolute Return funds focus on the buy-side of the investment. Fundamental Value refers to funds
seeking individual quality of stocks (bottom-up approach) and Fundamental Growth is linked with a
top-down approach, the manager trying first to identify sectors or economies of interest. Long Bias
strategy is evidently focusing on identifying under-priced securities, with stocks and has more long
than short positions in a portfolio. Short Bias is the opposite.

To be more precise, there can be slight distinctions between strategies, even if the underlying traded
securities are identical. As explained by Khandani and Lo (2007), Long-Short Equity funds may
use techniques that are quantitative or not, where technology may not have an important role to
play. Conversely, funds proceeding to Statistical Arbitrage use highly technical, heavy computational,
short-term mean-reverting strategies, with a large number of assets. Finally Quantitative Equity
Market Neutral funds seek a lower turnover, with less frequent trades, again using quantitative models
but with e.g. economic indicators. This shows that those categories only remain a tool to help for
categorization.

Macro

ex: Commodity; Currency; Systematic Diversified ;

Macro Funds follow generally a top-down approach, seeking to take benefit from global macro-
economic changes, movements of the economies or government decisions. Such funds generally operate
on various markets (bonds, equities, commodities, credit, etc.) and take mainly directional bets.

Relative-Value

ex: Fixed Income; Convertible Arbitrage; Volatility ;

Relative Value is a very vague category that includes all kind of sub-strategies whose objective is to
annihilate market risk using leverage, pairs, or various kinds of assets. Some Long-Short Equity strate-
gies could then be considered as Relative Value strategies. Fixed Income strategies are concentrated
in investing in fixed income instruments (bonds, swaps, interest rates, etc.), seeking arbitrages with
the use of long and short positions on those securities. Convertible Arbitrage funds buy convertible
securities while hedging their positions on corresponding underlyings (equity, fixed-income).

Event-Driven

ex: Credit Arbitrage; Distressed Debt; Merger Arbitrage; Special Situations;

Merger Arbitrage takes place following merging announcements as funds may purchase stocks of the
target company and short the stocks of the acquiring company. Event Driven strategies try to take



benefit from special situations in the life of companies: merging, bankruptcies, hostile takeovers, rat-
ing degradation, public offerings, etc. They apply to various markets and assets and are usually less
concerned by market movements. Distressed Debt strategies classically focus on distressed companies
that are e.g. on the verge of bankruptcy. Their debt is therefore under-priced and such strategies
seek to benefit from it. Merger Arbitrage strategies exploit the co-movements of the stocks prices of
companies that will nearly merge.

Managed Futures/CTA

As said before, they constitute a particular case. CTA (Commodity Trading Advisors) are regulated
by the CFTC and the NFA in the US and invest in options, commodity futures, foreign exchange
securities. Usually in the databases, they are separated from other single funds.

For each category (Equity Hedge, Relative Value, etc.) Multi-Strategy Funds may be found. Finally,
some of those strategies can focus on some economies or specific markets. The categorization is usually
the following. America represents North, Latin and Pan-American markets. Europe refers to UK,
Western, Northern, Eastern and Pan-European markets, but also to Russia. Asia recovers mainly
Japan, Hong-Kong and Singapore, but the main distinction is between Asia with or without Japan.
Finally, Emerging markets is used to refer African, Latin, Middle-East, Russian and Asian (ex-Japan)
markets.
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